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ABSTRACT

Our research concerns optical data processing for missile guidance and target recognitioi

It uses pattern recognition techniques with an increased use of knowledge base, inference machir

and associative processor techniques. Our Year 3 work concerns new algorithms, real time an

practical realizations of such systems, and new initial work on associative processors, symboli

rule-based processors and directed graph processors (with new attention to unique optic,

realizations of such systems).
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1. INTRODUCTION

The work in the past year of this grant (1 January 1987 - 31 December 1987) and its no-

cost extension (January-March 1988) produced results on various new optical pattern recognition

algorithms, real time laboratory results, new practical computer generated hologram recording

techniques, and four new areas of potential work in optical artificial intelligence (these include

associative processors, symbolic and rule based systems, as well as directed graph optical

processors).

In this last year, the Principal Investigator (PI) and our AFOSR optical data processing

effort were quite visible within the community. The PI served on the Defense Science Board

Task Force on Image Recognition, gave 2 invited talks in non-optical processing conferences

[1,2], an invited survey paper on optical pattern recognition and artificial intelligence 31, served

on a NASA review committee on photonics, participated in several panel discussions, produced a

book chapter on optical feature extraction 141, an encyclopedia article [7!, plus numerous papers

and conference presentations. This ends our pattern recogrntion AFOSR work. The results we

have obtained should be of use in many, future aspects of optical processing for image aind scene

analysis. These results are well-documented, due to our conscientious publication effort. These

works have also been published in various non-optical journals to provide wider exposure for this

technology.

We now highlight our research results in this third year of our work. Each result is more

fully detailed in subsequent chapters, as noted. New pattern recognition algorithms and

architectures devised included: new Iough transform techniques for distortion-invariant pattern

recognition [51 were devised and demonstrated (Chapter 2 details these), a large 1000 class

pattern reco'gnition problem was addressed [6] with attractive initial results (Chapter 3 details

"his wrrk), Rnd a new s ri;, 1 CO 1 processor i8i (detailcd .'a Chdpter 4) was advanced. Our
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second thrust area provided real time laboratory results of distort ion-invariant pattern

recognition using a liquid crystal television [91 (Chapter 5 details this work) and practical

computer generated hologram (CGII) synthesis techniques using a laser printer were advanced

10 (Chapter 6 details this work). Our third major research area involved optical artificial

ir 'Aligence processors. This work provided new results in associative processors, symbolic

proccssors. rule based and directed graph processors. This included: new error correcti"-I

associative processor concepts iii) as detailed in Chapter 7, new associative memory mapping

realizations of an optical feature space [12, (Chapter 8), new heteroassociative memory processor

performance measures and recollection vector encoding choices 131 (Chapter 9), symbolic and

rule-based processors [141 as detailed in Chapter 10, and directed graph optical proce-or

concepts and realizations 1151 as detailed in Chapter 11. These last 5 items represent major new

optical processing contributions to knowledge processing. Chapter 12 provides full

documentation of our publications, presentations given, and theses produced related to this

AFOSR effort. The 90 papers and over 100 technical talks presented in the three years of this

program represent a quite major and significant contribution to optical

data/information/knowledge processing research and to directions for future research in this

area.
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2. HOUGH TRANSFORM FOR PATTERN
RECOGNITION



(0.Pt'I iR \'5I5N. ORAPHI(S. ANJ) JM\GtI I'RO( ISSING 38. 299 316 (197)

Hough Space Transformations for Discrimination and
Distortion Estimation
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A ness use of the Hough transform space delined for straight line, is decnbed. The Ilough
space is used directly with nes efficient distortion parameter transformalion. and teniplate
matching This technique allows niulticlass discrimination. intra-class distortion invariant
recognition, and multiple distortion parameter estimation. A nes hierarchical ditortion
parameter search nethod and spatial quantization in Hough space make realization of this
technique \ers attracti\e. Performance of our algorithm on aircraft imagery and in the
presence of noise is provided 1s- sA-,c" Pr . 1-

1. INTRODUCTION

The Hough transform [1, 2]. as suggested originally, is a method for detecting
straight-line segments in an input image. This concept has been extended to include
other analytically representable curves such as circles and ellipses 13]. It was further
generalized to include arbitrary shapes and even three-dimensional (3-D) objects
[4. 5]. These extensions are commonly referred to as generalized Hough transforms.
The earlier versions of the generalized Hough transforms [6] required the computa-
tion of the gradient of each edge element and their storage in the form of a table. To
reduce the computational burden. Davis [7] suggested a hierarchical Hough trans-
form in which subpatterns of the image rather than the edge elements (pixels) wt're
used as the basic units. The implementation of this approach is quite complex since
we must deal with patterns rather than pixels.

Ballard and Sabbah [4] used a similar concept employing line segments rather
than edge elements. They also suggested a different type of generalized Hough
transform for detecting one type of object of arbitrary shape with scale, rotation.
and translation differences present. They assume that the object boundary can be
approximated by straight-line segments and that a lis of the exact lengths. orienta-
tions and positions of all object boundary segments (with respect to a reference
point on the object) is available. It is difficult but possible to obtain such a list for
the model of the object being searched for. However, it is computationally burden-
some to accurately obtain such a list for an input image. especially when noise is
present. Implementing this efficiently will probably require a special symbolic
language to handle the lists, especially when the lists are complicated. Detecting
peaks in the Hough domain is difficult, especially when bias and noise are present
[8]. It is difficult to quantify how well any such method will work when extraction of
line segments in the input image is not easily achieved. The performance of such
methods in the presence of noise is also not easily analyzed. All of these methods
presuppose that the type of object being searched for is known in advance, i.e.. they
are only applicable to one-class problems and do not easily provide discrimination
against other object types.
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I-10, I hnalgC plane [t1 11ough tran, forin pla,e,. mapping, (a) Point. -I .and B ;I ILc itm-t pin' ,,rc
mnapped to (h) curx c. 4 and B in tihe I IouLgh tran, forni plane Dtw 1i ne in ( t) Timp, I,, Ih, poi nI p f."'l
Inl (hi

The basic Hough transform for straight lines can be readi{k implemented di,,itallk,
if the conventional parameterization in term. of the normal distance p and i, nle 0

for straight lines is used. Figure I shows this classic image plane .IWx. I to Hlough
transform plane H(O, p) mapping for a line. Lich point ( x. inm Nt x. I) is mlapped
to a sinusoidal curve in I/(#., p) given by

X Cos -4- sinO p

This Ninusoidal curve give,, the /p and parameters of all the straight inhei painin
through the point ad. v). Each point ol the straight-line na, to difernt

sinusoidal curve (e.g., A and B in Fig. lb) given by Eq. (1)..:'All thlese CUr~es
intersect at a point in the Hough space and thi,, point defines the 1) and 0J
parameters for the straight line shown in Fig. Ia.

The calculation of this Hough transform requires oil,, simple multiplication,
involving trigonometric functions. Since the saoe muniplications are performed for
every edge pixel in the image. computation of the Hough transform cais he achied
in parallel The results are accumulated in the tth p ) Hough arra. It has also
been shown 91 that the Hough transform i a spcial case of the Radon transform
and that it can also easily be computed using optical techniques at video rates
10, 11. This transform and p(ad p ir, thus veof attractive for the lio-le el

representation of images of objects.
This paper describes ane n in approach to estimation If the s.le rotation.

and translation of an input image with respect to a reference image. It us- the basic
straight-line Hough transform space. The proposed method is unique because it Is
capable of handling multiclass problems. Our approach is also original because tie
matching is performed directl in the Hough space. This differs significantl from
the other approaches in which Hough techniques (i.e., hccumulating votes in a 2-I)
or 3-D parameter array) are used for matching tables. In Section r. we revie the
ease with which one can obtain the Hough transform of the input image. Section 2
also discusses the various applicroachsad estiation,,, of the Hough technique and
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the ad\an tages and disadvantages of each. In Sect ion 3 " .e detail our use o thc
Hough space for distortion invariance. 'Ihis involves tic\, transformiations applied to
the Hough space. The ease with which the transformations can he achiccd I,
discussed. A hierarchical matching technique is detailed in Section 4 that siumtin-
cantl\ reduces the computations required to determine the object class and Ihe
object orientation. The image database used and the results obtained are then
advanced (Sect. 5) and noise performance is also provided. Finall\ Section 6
sUttlllIariZes our work and advances our conclusions.

2 Till. 1tO L(itl 1)( ( ',IN .\S .\ '-1) [ A LI SI'\( I

The algorithns suggested thus far to estimate the scale, rotation, and trainlation
parameters of an input image using the Hough technique require the compilation of
some form of a list or table. [his list can he precotIpLted. as it 141. or d\siancallk
computed. as in 151. The R-table [61 require,, the storage of a list of the eradients of
all edge elements and their positions ,\ith respect to a reference point for tile object
to he searched for. For in unk nown input inage. tile location of tile reference point
must be determined To achiev+e this, an accumulator or Hough arra\ is created W\ith

each element denoting a possible location of the reference point in the input i11ace.
File list from tle model is used to compute the possible iocations of tile reference
point with respect to each edge element in the input intage. sM here each posible
location corresponds to a particular translation and rotation of the object. 1huS.
each edge element in the input image \sotes for all possible locations of the reference
point and these votes are accimulated in the Hough array. When the kotint pron,,
has been completed for all edge elements,. the peaks in tile arra\ indicate the
possible locations of tle reference point in tile itput itttage and tius denote tile
oblect's possible location. A similar approach usitng line ,egentts rather than ede
elements has been suggested [41.

In both cases, if the scale, rotation aitd trajis,]ation parameters of the object are to

be estintaled sintultapeotislk. a 4-D Hough arras is needed. In tilts arra\, t%\o
dimensions denote tile two translation parameters and the renlaininc ts, o dinitent-

1ions denote rotation and scale. Ttis, signiticantlv increases tile contputational
complexity and the ntemory requirements. Peak detction can be ver\ dillicult in
such a 4-1) array [8 since ve must deal with hvper-surfaes. Io o\ercoltC solc of

these problems, a two-le\e approach has been recomtended in 141. itn \lict the
scale and orientation are estimated first (using a 2-D Houh arra\) and then
translation is estimated (in a second-level 2-I) Hough arra\ . lhe digital iltplenten -
tation of these methods is straiglttfor\ard and canl be realied in parallel [121, gi Yen

sufticient hardware and once the list has been obtained frot tie model aInd tile Iine
segment information has been extracted from the itputi Itiagte. (Accurate Calculation
of the line segment data from the input image can be ver\ diflicult.)

To reduce the memor' requirements and computatiotnal burden. another ap-
proach has been suggested by Li. Levin. and LeMaster 1131. Here the %oting process
is carried out only in those parts of tie Hough arra\ ltere peaks are likelk to occur.
This method, however, applies only to situations inl wlich an element in tile Input
image votes on a hyperplane (and not on the more general hipersurfacel in tile
parameter (Htough) space. It is also not knoxk n ho'+ well the method will perlornt
when the peaks are diffused.
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Several problems associated with these prior methods are sorth noting. As
Ballard and Sabbah point out [4]. the position information is ignored 'Mhile

estimating the scale and orientation in the first level. As a result, peaks can occur in
the accumulator array due to line segments in the input image that do not ,elen
touch each other and due to line segments that do not even lie near each other. Thus
manv false peaks can and do arise in the accumulator array. Another potential
problem [8] with these methods is the detection of the peaks in the Hough arrai,.
Because of the inherent noise and bias present in the Hough transform. sharp peaks
rarely occur, rather all peaks are distorted and diffused (smeared). Thus. \e require
the detection of local peaks rather than global peaks. and hence, sophisticated peak
threshold methods. This problem becomes much worse when the dimensionalit\ of
the Hough array is large, since we must then deal with hypersturfaces. Another
major problem with these prior methods is that the, require the detection of the
gradients and the positions of the edge elements in the input image. prior to the
application of the Hough technique. If line segments are used. their orientations and
positions are required. This image preprocessing often requires special edge-followk-
ing and line-fitting algorithms which can be inaccurate and tedious. The final and
quite a major problem with all of these methods is that the\ are object-specific and
must thus be reformulated if a nev object is to be searched for.

In this paper, we describe a different usage of the Hough transform to overcole
these problems. In what follows, it should be understood that b\ Hough tranrsform
(HT). we mean the basic Hough transform defined for straight lines.

A simple and fast method of computing the lengths and orientations of the line
segments in the input image is to use the Hough transform tself'. The peak.s in the
Hough transform give the strengths and orientations of all lines in the input image.
However. it suffers from the same problem as do the earlier methods since peak
detection can again be diflicult. Therefore, our new suggestion is not to extract an,
information from tile Hotugh transform, but to simply use the lough space as it is.

The basic idea of our approach is to approximate an object b\ a set of line
segments and to describe these segments by a given 2-I) pattern in the |tough
domain. Thus, two similar objects would have similar Hough transforms and twao
different objects would have different Hough transforms. If the object is scaled.
rotated, or translated, the Hough transform will change and distort. Hiowe\ver. as \\e
detail in Section 3. it is possible to define ne\ transforimations in the Hough domain
that can remove these distortions and reconstruct the Hough transform of the
original object in the reference orientation. When this is done, a simple template
matching with the Hough transforms of diflerent reference objects determines if the
input object is a distorted version of a given object. It also determines the class of
the object and its distortion parameters. This method can thus be used to dis-
criminate between different types of objects from the similarit\ of the template
matches of their respective Hough tran:,forms).

Eight distinct advantages of this approach are now noted. (I) It does not require
extracting orientation and position information of edge elements or the leglths and
orientations of line segments in the input image. (2) We do not need to detect tfie
peaks in the Hough domain. The inherent Hough bias will reduce our discrimina-
tion capability, but it is not a serious problem unless tie two objects are \er\
similar. (3) This technique uses only a 2-1) Hough space and thus there is no
concern with hypersurfaces. As a result. (4) real-time computation is possible. and
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P.-(x -Y)

Fi. 2. ['o-iitirn .sco(or P unit vector a(O) anti pi ection /, as delined h\ 11,1 (2) and 0i

(5) memory requirements are small. Memory requirements can be further reduced
by coarsely discretizing the parameters of the Hough space. Because we use the
Hough space itself, considerable quantization is allowed. (6) By using multiple
Hough space reference patterns, this method can be used for multi-class problem.
(7) The use of this Hough space as a 2-I) pattern in a correlator is attractive and
allows shift invariance. (8) Last, this approach can be easilb extended to the
recognition of 3-D range images and to the detection of 3-1) orientation and
translation. This can be achieved without increasing the dimensionalit\ of the
Hough space (as w~e will detail in a future publication).

3 HOU(it SPACE DISTORTION rRANSFORNI..\TtONS

In this section, we present a vector description of the Hough transtorm for
distorted objects. Our Hough space distortion transforms then directl,, folloxv.

3.1. Vector Description

In this approach. each point (x. v ) in the image is represented b\ a position
vector P = xi + yj from the origin as shown in Fig. 2. Here i and j are unit %ectors
along the x and v directions, respectively. The point P shown can lie on many
(theoretically an infinite number of) lines that pass through it. Each of these straight
iines can be characterized b, a unit vector a() and a magnitude p. The unit vector
a(0) extends from the origin perpendicular to the line and at an angle 0 w\ith respect
to the positive x axis and p is the shortest projection distance from the origin to the
line. The unit vector is described by

a() = (cos6)i + (sin6)j (2)

and the projection is defined by

P a() =. (3)

By varying 0 and performing the required vector inner products in (3). "e can easil\
generate the a(O) vectors and the corresponding p values for all possible straight
lines passing through a particular point P.
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We consider only a finite number of 0 values between 0 and 2-. Thus. the
process described above generates a finite list of (0. p) pairs that characterize the
corresponding straight lines passing through P. Tile point P is said to " vote" for all
of those (0, p) pairs in the Hough space. To represent the Hough space as a finite
2-D array, we discretize the values of p also. When the votes for all (9. p) pairs
have been accumulated for all points or edge elements in the input image, then the
result is the discrete Hough transform of the input image. We assume that p is
positive. If P - a(9) < 0, we ignore the corresponding (0. p) vote, since this implies
P - a(0 + 7r) > 0 and that the associated vote would be counted at (0 + 7, p). If
p = 0, this corresponds to a line through the origin and for this case. (9. p ) and
(0 + , p) represent the same straight line. Thus. we need consider 0 values only
between 0 and - for the top J) - 0 row in our plots and coniputatios.

3.2. Hough Trans form of a Scaled Image

Let 1,(x, v) be a scaled version of /(-x. *v) with scale factor s. such that a point P
at (x, y) maps to a point P, at (x/s. y/s). Since P, - a(0) 9 ps. the votes that
occurred at (0. p) in the original Hough transform now occur at (0. p/s ) for this
scaled object. Thus, the Hough transform is compressed or expanded along the p
axis only, depending on whether s > I or s < 1. The Hough transform 1(O. p) of
the scaled image l,(x, v) is thus related to the Hough transform H(O. p) of the
original image by

H,(0, p/s) =H(9, p). (4)

The above equation can thus be used to reconstruct 11(9. p) from tt(9. p) as %ie
detail later.

3.3. ttough Transform of a Rotated Image

Let /,(.v, y) be the original image rotated in the image plane b\ an angle 0. In
Fig. 3, we show one point P on the original object and the associated point P, on the
rotated object. In polar coordinates. P lies at (r, , and P,. lies at (r. 4 + ). Since

P, -(r ,*,b, )

a(+)

F:i(; 3. A point P on the ohecr, and its position (P, i tcn (ic oblcct t, roficd ahot 0he oni'.m hi x)
angle P
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P, -P+T

T=a i+bj

p

- 4. A point P on the object, and its position P when the object is translated b% T

P a(9) p = - a(9 + (A), it follows that the votes at (0, p) in the original
H(6, p) now occur at (9 + P. p) in the Hough transform H,(9. p) of ,.( x. y). The
new and original transforms are thus related by

H,(O + p. p) = H(O, p). (5)

To obtain the original Hough transform from H,(9. p) of the rotated image. we
need merely shift the Hough array horizontally by an amount equal to the rotation
i. This shift is a circular shift since the points (0, p) and (0 + 2"7, p) are equivalent
in the Hough domain.

3.4. Hough Transform of a Translated Image
Let 1,(x. v) be the image obtained by translating the object by (a, h) and let

H,(O. p) be its Hough transform. A point P in the original image will now lie at
P, = P + T, where the translation vector T = ai + hj is shown in Fig. 4. We let the
projection magnitude be P • a(0) p for a line corresponding to an angle 0. Then,
the projection magnitude for the translated point is computed as

P, a(0) = (P + T) • a(8) = P a(0) + T. a(9)

= p + (ai + hj) (cos i + sin j)

S=p + acos0 + bsin0 =p + tcos(O - a), (6a)

where

t= (a 2 + h2) /2: a = tan (bl/'a). (6b)

The second half of Eq. 6a follows from a trigonometric identity. We hereafter
describe translations by the parameters t and a. To evaluate and interpret (6), we
consider two cases separately.

Case I. p + tcos(O - a) > 0.

In this case, if the point P voted for a point (0, p) in the Hough domain, the same
vote would occur at (0, p + t cos(9 - a)) in H,(O, p). Therefore. the elements of
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the column corresponding to 0 in the original Hough array are shifted along the
positive p axis by an amount equal to t cos(9 - a).

Case 2. p + tcos(O- a) < 0.

In this case the vote does not occur at (9, p + tcos(9 - a)) since p +
tcos(9 - a) < 0. (Recall that in the Hough space, p > 0.) However, this implies
that -P, • a(0) = P," a(9 + 1r) = -(p + t cos(0 - a)) > 0 and therefore the vote
would be entered at (0 + ,r -p - t cos(9 - a)) in the new Hough space.

Combining these two cases, we can obtain H(O. p) from H,(9. p) as

(H, (, p + t cos(O - a)) if p + I cos(0 - a) > 0
H Ht(O + ir, -p - tcos(O - a)) if p + tcos(O - a) < .

These results show that a translation of the object causes shifts in the Hough
transform in the vertical (p) direction only. The amount of the shift is a function of
0 for each object point, i.e.. it varies along the horizontal 0 axis in the Hough space.
For each column with a positive shift, there is a corresponding column a circular
distance 77 away in 0 that requires an equal negative shift. This occurs because
tcos(9 - a + T) = -tcos(9 - a). Thus half of the columns in 1t,(9, p) will have
positive shifts and half of them will have corresponding negative shifts when we
produce H(O, p) from H,(, p). Those elements that are shifted out of the Hough
space as a result of the negative shifts reenter the Hough space a circular distance 7r
away, we explained in Case 2.

3.5. Combined Scale, Rotation, and Translation Transformation

Equations (4), (5), and (7) can be combined to yield

H'(O + Ip tco s ( O -  ) a)- i+ fp p+ tcos( - a)> 0

H(9. p) =(8)
(H( -p - tcos(90- a )H' 0+ +t. ifp + tcos(- a) <0.

s

This relates H'(0. p) for a general distortion to H(O. p). In Eq. (8). it is understood
that the additions to 0 are performed modulo 27.

3.6. Digital Implementation of Distortion Transformations

A digital implementation of the distortion transformations is particularly simple.
Assume that H'(0, p) is stored as a 2-D array and that the translation of the object
is known. To undo the distortion in H'(0, p) caused by translation, we need merely
shift the columns corresponding to different 0 by an amount t cos(9 - a). Since t
and a are known, the amount of shift for each 0 can be precomputed. If we feed
each element in the top row of the new H'(0. p) to the element in the same row a
distance 0 = ir away horizontally, then as the elements of H'(0. p) are shifted out
from the top row in one column, they enter the proper column a distance 0 = w
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away, causing downward shifts in these columns. This follows from the earlier
discussion of Eq. (7). This is easily achieved by up/down shift register type
memories.

Having corrected the effects of translation as above, the H'(0, p) distortion
effects due to rotation p are similarly corrected by circularly shifting the rows of
H'(0. p) by p in the 0 direction.

To produce H(O, p) from H(O, p) for a scaled input and a given s, we consider
two cases (depending on whether s > I or s < 1). We assume that p and s or 1/s
are integers. (The implementation is a little more involved if s is not an integer and
will not be discussed in this paper).

Case 1. s > I (compressed image).

Assume that s is an integer. H(O, p/s) is defined only for those values of p for
which p/s is an integer. Thus, using (4) we produce H(6, p) from HJ(O. p) for p
such that p/s is an integer. The remaining rows in H(O. p) are assigned zero
values. Thus, we produce H(6. t,) from H,(O, p) by (4) for rows p where p/s is an
integer and by inserting zero-valued rows in the appropriate rows p of the array
where p/s is not an integer. This operation is also easily achieved in advanced
memory arrays.

Case 2. s < 1 (expanded image).

Here we replace s by I/s (an integer). From (4). for the case of a scale change. we
require H,(O. sp) = H(O. p) and H(6. s(p + I)) = H(6. p + 1) for all p. Con-
sider row r in H,(O, p) such that sp < r < s( p + 1). Since r is not exactly divisible
by s, no row in H(O, p) exactly corresponds to this row in HJ(O. p). Therefore. we
add the votes for this row to the nearest discreti/ed value of r/s (either p or p + 1).
Thus, to obtain H(9, p) from H,(O, p) for a given s. we need merely shift the data
in all rows r in H,(O, p) (for which r/s is not an integer) and add these data to the
data in the closest rows that are divisible by s. These scale distortion transformation
can also be easily implemented using shift and add memory techniques.

4. HIERARCHICAL MATCHING

In the previous section, we described a method of efficiently producing the Hough
transform of the image for a given scale, rotation, and translation. The method
assumes that the scale, rotation and translation parameters are known. In practice,
we are given a reference image and are required to estimate these parameters for an
input image. In this section, we address simple techniques to estimate these
parameters.

4.1. Brute Force Method

One method uses brute force. In this method, we consider all probable combina-
tions of these distortion parameters and for each of these allcwable combinations,
we construct the associated Hough transform from the observed Hough transform
of the input image. The combination of distortion parameters that give an H(O, p)
that best matches that of the reference(s) yields the distortion estimates and the
object class estimate. If the number of possible combinations of distortion parame-
ters is large, the brute force method will be slow and inefficient.
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4.2. Reduced Distortion Parameter Search

We thus consider methods and cases when the number of possible distortion

parameter combinations can be reduced. This is very application-specific of course.
If the target range data (or a range image) is available, the value of scale can be
estimated quite accurately. If the application concerns top-down views of objects
such as airLraft, then the orientation and location in H(O. p) of the two parallel
lines that dcfine the fuselage of the aircraft provide a good estimate of the object's
rotation. Additional object distortion information is easily obtained from simple
operations on the image. For example, the translational location of the object can be
determined from the projections of the image along the x and Y axes or from the
first order moments m,,, and mH.

4.3. Hierarchical Search and Classification Method

We now detail a simple three-level hierarchical matching-search procedure that
we have found to work well when the scale of the object is known and when the
object is approximately centered (using moments or projections). Figure 5 shows
this method in block diagram form. We describe this processor with the distortion
transforms (Sect. 3) applied to the reference patterns. In the first level, the
translation is ignored and the Hough transform of the input object is matched with
all allowed rotated versions of the Hough transform of each reference object. This
search is performed for rotations 4) quantized in 1p intervals to the degree desired
and required for the given object classes and application. This can be easily
achieved by feeding the Hough transforms of the input and reference images to a
1-D correlator as shown in Fig. 5. This is because a rotation of the object gives rise
to a corresponding 1-D shift along the q) axis in the Hough domain (Sect. 3.3). The
rotation angle 4), corresponding to the best match and its two nearest neighbors 0).
and 0)3 are retained as the three most probable q) values. From the centering
accuracy possible, the maximum value of t, tnt. is known. In the second level, a
value for t is assumed. (We use t ,a/ 2). We must still search the distortion
transforms of the reference objects(s) for all expected a values for each of the three

Inu o~
'

) rsoLo .... ctcn 4 Dlstorto Pio.e tn, 4 t

I~ lIIetwl2 lenel-3

select threeI 4 rel t " and three a' slect on .a ted

Fic;. 5. Block diagram of the 11T hierarchical search and classification method
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¢ estimates obtained from the previous level. This can be easily achieved h\
applying only the a distortion transforms to the Hough transforms of the reference
objects (Sect. 3.6). A different a value results in a new HT that is not simply a 1-1)
shifted version of the original HT. Thus. this matching in the Hough space can he
done by multiplying the corresponding elements of the Hough transforms and
adding the products. This amounts to evaluating the correlation value at the center
point. In Fig. 5, these correlations evaluated at one point are referred to a"
projections. The Aa quantization used is determined by the object classcs in\olved
and the accuracy required in the given application. [he ) value anOL three a alues
corresponding to the best match (a,) and its two nearest neighhors ( , and ,, I are
passed to level 3. In level 3, we search t from 0 to t .,., for the three o alues and thle
one best 0 value determined from level 2. The HT for a ne,. t ,aluc i, again a ne"
HT and this search in At increments is performed as the a search in lecl 2 was.
The number of t values and the range of t to be searched are set b,, the expected
accuracy of the centering method used. The best match vields the final i. a. 0. and
object class estimates. This concept can be extended to include a scale search as
well, with an associated increase in complexity. Section 5 details and quantities this
hierarchical procedure for different aircraft image classilication problems with
attention to the quantizations A4) and A and the number of searches needed.

5 DATABASE AND INITIAL TEST RESULTS

5.]. Database

The images used in our initial experiments were top-down edge (boundary)
images of live different types of aircraft with a resolution of 128 x 128 pixels.
Figure 6 shows the ,0 = 0 edge images of the live aircraft types used. Using
specialized software and aircraft model descriptions, various translated versions of
each image with t varied from 0 to 60 pixels within a 256 x 256 pixel image frame
were used together with different rotated and scaled versions of each image with the
scale s = 1. 2, and 3. For test inputs, t was varied continuously from 0 to 60.
whereas our t quantization used in the system was 10 pixels. Thus our t estimates
are expected to be accurate only to + 5 pixels. The a translation parameters used
ranged from 0 to 315' and were quantized to An = 45' . The rotation parameters 5

r. 6 Edge images of the aircraft types used. (a) DC1O, (b) B57, (c [tH05, (d) Mirage. (e) Mig
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used varied from 00 to 3300 in increments A4 = 30'. Thus, there are 12 values of .

3 values of s, 6 nonzero values of t, and 8 values of a for each nonzero value of t.
This makes a total of (1 + 6 X 8)12 x 3 = 1764 possible combinations of the
distortion parameters.

The H(O, p) transform space was computed as in (1) with A0 = 5', Ap = 5 and
the origin in the center of the 256 x 256 image frame. The Hough array (0. p) is
thus of size 360/5 X 128/5 or 72 x 26. Byte arrays were used to store 11(O.p) to
256 levels from 0 to 255. The largest pixel value in all H(O. p) arrays was
normalized to 255 and values below a threshold were simply set to zero to reduce
the computations in the matching process. A threshold of 40 was used for noise-free
images. The hierarchical search test results involving scale changes have not been
included in this paper. However, our experiments indicate that in order to achieve
good results with scaled images, we need to compute the Hough transform with
slightly better resolution. AO = 20 and Ap = 2.

5.2. Representative H(O. p) Examples

In Fig. 7a we show H(O, p) for a Mirage oriented at 0 = 0 and centered at the
origin and in Fig. 7b we show H(O. p) for the Mirage shifted upwards by 60 pixels.
We discuss Figs. 7a and b to provide insight on the contents and pattern in the
Hough transform. The peaks in each H(O. p) can be associated with the arias
lines in the image. Ih Fig. 7a. the bright peaks at approximmte! 0 170' + 30'
correspond to the two lines that define the front cdge of the wings. the peaks near
9 = 90' correspond to the back edges of the wings and the edges of the tail. The two
parallel vertical lines that define the fuselage produce peaks at p = 0 and 0 0 and
10P. (Recall that p was discretized to integer multiples of 5.) In the Hough
transform in Fig. 7b of the Mirage translated vertically upward by 60 pixels.
the columns of the Hough array are shifted up or down by t cos"( 9- (1)=
60cos(9 - 900) = 60sin0, as in Eq. (6). The shifts from 0 = 0 to 180' are positive
downward with the maximum shift occurring at 9 = 900. The shifts for 0 between ,

0 9P 10 270 0

(al 40--

0 o 18 270

(b) 40-

80

01 09 180 2.70 *

p

FtiG. 7. The Hough transform of the Mirage (a) centered at the origin. (bi shifted pozard, b\ 6A
pixels, and (c) corresponding to the best match. For this test, ( 4 = 2.3 10". = 51 Ito'. and
C, = 1.04 x 106.
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ot 9Q 180 470

40-

P
01 , 0. 19P 270 0

20-

P

4'

Fio. S. The H-ough transform of the centered Mirage (a) unrotated. (h) totaled h\ ' () a d
(c) correponding to the be t match. For this test. ( 238 a t (1 - _ 10 tO1 and ( 62

lO',

and 2 " are negative and the original data there merges in the top portion of the
array and enters 10 away between 0 = 0 and q7. As ,een, this causes the peaks due
to the front edges of the wings to now occur at 90' + 30' (at smaller p values)
instead of at smaller p values at 270' + 30' as in Fig. 7a.

To determine the distortion of this one known class of input test object from Fig.
7b. we could produce t1(0. p) for all 1764 possible sets of the distortion parameters
(s. t, ty, and 0) applied to the Hough space. For each case, the new H'(0. p) could
be template matched against the H(0. p) reference in Fig. 7a. Tihe distortion
parameters associated with the largest correlation value obtained are selected as the
best estimate. Figure 7c shows H'(9p for the best match. As can be seen, it is
visually very similar to the original H(O, p) in Fig. 7a. The correlation value
CI = 1.51 x 10 ' for the correct (t.a.)= (60. 90'.0) choice was the largest one
obtained. The next largest value C, = 1.04 x 106 occurred for (t. a . ,) = (50.900.0).
The maximum C, value compares favorably with the autocorrelation C, = 2.38 X
10of the original H(0, p). Thus. local maxima can be avoided and high confidence
in the final estimate can be obtained by ensuring that C, is some high fraction of (,
(typically = 0.6 CQ).

Figure 8 shows similar one-class test results for the Mirage with 0 = 00 (Fig. 8a)
and 0 1200 (Fig. 8b) rotation only. The IF'(0, p) pattern with the best match is
shown in Fig. 8c with its C, value and thL associated (I. a. O) parameters. The (C,
value for the next best match is listed for completeness. Again, the correct object
distortion estimates are obtained. The variations in the C, values arise due to the
quantization of the Hough space. Visual inspection of Figs. Ka and b shows that
they are the same with Fig. 8b being a cyclically shifted version of Fig. 8a (with a
cyclic shift of 1200 or 120'/360' =t of the H(O, p) pattern. As can be seen. Fig.
8c is almost identical to Fig. 8a.

5.3. Multiple-Distortion Intra-Class Recognition Tests

This H(O, p) transformation and template matching technique was then applied
to multi-class multiple-distorted versions of the live aircraft types. Columns 1 -4 in
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TABLE I

Selected Intra-(lass Multiple )istortiot Tet Results,

Best estimates front Best csttiates from
full search hierarchical search

T1¢ 30 t = ' At10.1 45 = 1' At 10, A 45'

Test Aircraft Translation Rotation Translation Rotation Translation Rotation
no name a. h (pixels) P (degrees) a. h (pixels) € (degree,) a. 1, pixel,) p (degree,

1 Mirage 0.60 0 0.60 0 0, 60 0
2 Mirage - 3030 0 2(, 2(1 0 2S. 2 310
3 Mirage 14,14 120 14,14 120 14.14 120
4 DCIO 7.7 270 7.7 270 7." 270
5 DCI0 25. 25 270 2(, 2(1 270 14. 14 1 50
6 DCI0 30. 35 270 35. 35 270 5, 35 lW)-
7 B57 5. 5 320 7. 7 13 ), 7 331
( B57 17.17 321 21.21 I3f1 21.21 331
9 B57 58. 5 3210 60.0 33'10 S )0 10-
10 Mig 8. s 22i 7. 210 . -1)
11 Mig 14. 14 225 14. 14 21) 14. 14 1()
12 Mig 45.41 225 42.42 2110 21 "-0
13 Fil5 9.9 31)1 14.14 33) 14.14 (310
14 F105 20. 20 1 21. 21 1Io 14. 14 11".

15 F15 60.5 31(1 601.11 f 60.0 31(1)

•Large i (t __

Table I describe the input test data. )ata for three representative distorted versions
of each aircraft type are included. These initial one class (intra-class) results assume
that the object class was known and thus only represent tests of distortion
parameter (s. 0. a. h) estimates. The results for both a full (brute force) search and
ou: hierarchical search are included. The full search method results (columns 5 and
6 of Table I ) alwavs yield the correct estimates wkithin the quantizations 10 = 30.
.i tt 10, and Aa = 450 of our distortion parameters. The estimates for translation
are given in terms of the a and h parameters which can be easilh obtained from the
t and a parameters.

The results using our hierarchical search method are now discussed. Note that the
test inputs are only approximately centered in these tests. The intra-class test results
on the same 15 test images using our hierarchical search method are presented in
columns 7 and 9 of Table 1. The scale x is assumed to be knoxn. In the first level.
12 tests of O are made (A = 30') assuming that the translation is zero (i.e.,
a = h = 0) and the three best values are passed to the second level. In the second
level, 9 values of R are tested for the three best q values from level I (i.e..
8 X 3 = 24 tests are performed). These level 2 tests are performed for a fixed
t [a2 ± h )t 2 - 20. Since the object is assumed to be approximately centered.
t 20 is a reasonable estimate for translation. The three best a \alues and the best
(p value are then passed to level 3, wkhere six t tests for each a are made (3 x 6 = 18
tests). The total number of test matchings required is thus 12 + 24 - 18 or onh 54.
This is a significant reduction from the 1764 tests required in the brute force
method. As can be seen from the results, this method gave comparable results,
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except for large t (t > 25) denoted by * in Table 1. This is expected because the
simple method (assuming t = 0) used to estimate the ,p value in the first level failed.
By centering the object in advance or by including several t values in level 1, near
perfect performance can be obtained.

5.4. Discrimination and Multiple-Distortion Performance

Table 2 shows test results of the discrimination and recognition performance of
our hierarchical method in a multi-class case. Columns 2 4 list the selected input
test image information. The tests included four of the input aircraft types with
different multiple translation (a, b) and rotation (0) distortions present and one
(test 5) with only a shift. The best template match for each test input with two to
four of the reference aircraft types is given (columns 5-8). In tests 1 -3. we see that
both the correct aircraft class and the correct distortion parameters are obtained.
Such an excellent performance is expected when t < 25. Thus the multi-class
discrimination and intra-class recognition (multiple distortion invariance) features
of this processor have been demonstrated. From Fig. 6. we see that the F!05 and
Mig images are rather similar. We thus expect discrimination between these twvo
aircraft types to be difficult. In test 4. we find that the Mig input would be
misclassified as an FI05. Using a Hough array with higher spatial resolution could
resolve these two similar classes. If we use the fact that C, = 0.83 x 10' occurs for
the Mig and that a larger C4 = 1.56 x 10' occurs for the F105. we can normalize
the data or set C1 = 0.6 x C4 and realize that the observed ( is too large and thus

TABLE "

Multi -Class Multiple Distortion Recognition and Performance of Ilicrarch calI luoh lran,forin
Trans formation, and Matching

tierarchical processor results

Best etinate,

Input test aircraft information A0 = 30. t 10, 1 45'

Test Aircraft Translation Rotation Reference (orrelatio'n
no. type a, h (pixels) 0 (degrees) aircraft (1, 1, % alue

I DC10 7.7 270 DtOC0 210 1 7- 1 li)'

F105 7,7 270 1 2 1 "

B57 20.0 240 1.03 x 10'
Mirage 0,0 270 1 1 X lot'

2 B57 7. 7 30 B57 7. -7 30 153 x tO'
DC1 0 14, 14 0 1.14 x 10'
FI05 14, 14, 60 , tO 16

3 FtO5 -7.7 331 FI05 7,7 330 1.45 x 10'
DCI0 0, 10 331 1.30 10
B57 7,7 330 lit x 106
Mig - 10, 0 330 too X lo

4 Mtg -t4. 14 150 F105 21, -21 150* 1.05 x t0
Mig 14, 14 1S0 0.79 x 10'

5 Mirage 0.60 0 Mirage 0.60 0 1.51 x 106
DCt0 0,60 0 1.16 x 106

Miclassiied.
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a b C

tIbj( triage ofthefrge~t hnos N~h (a 0h 2rNii,(.ad (C , 0 3

provide discrimination of such similar object classes. From Fig. 6. we also note that
thle Mirage and DCIO are similar in shape as wxell as in size. Test 5 '.as included to
show, that our H-ough transform hierarchical technique still allows us to discriminate
betwkeenl them. All the test results were the same "hen the brute force method was
used, i.e.. identical values for the best CI and C, valuies were obtained.

5.5. nsc' Perlformanct

To determine and quantify the performane of these methods, in thle presence oif
noise. flis inpot image,, wkere generated ats follows,. Random noise with at Gaussian
distribution and of zero mean and different variance a, wkas added to each pixel in
the test image. The resulting image was then rebinariied b\ thresholding it at 0.5.

Fioure 9 shows thle image of the Mirage " hen noise wth 0,, (10.2. (, -0.25. arnd
ao 0.3 wkas added. Table 3 Iio'~xs the performance of our full search and hierarchi-
cal methods- for intra-class multiple distortion estimation w\ith a noise variance
(Y, t0. 2. As seen. all results are perfect fin the case of the brute force method (%i thin
our quantuzation ). The results, in the case oif the hierarchical method are correct
except in the case of test 3. When 7,,\was, increased to 0.3. thle brute force mnethod
still P-av the same results,. but thle hierarchical method \\.ias in error in 30 50)1 of thle
case,, vith thle ) estimate in level I eenerallv being thle estimation parameter fin
error,A 

I

Sciec red tria-( la-~ Mtiple tDr~torior lct Reuli.t.fu\\h i'. Noi~eii a, - ka I 2 .

fill] 'eCir~1 litrrchl-i 1'licIh
A 5 - 10Arli , 10 .A"- (i e l A 1, lA" --

Teit Air-rafi Traaslation Roianonr Trari.Iaion Rolaiwn j~~rr Rotation
an. name a.h (pixel,) 6 degree' i a, , (pixel') : Ieree') '. I, (pul l' olceree'

I Mirage 0,601 fI 1. 10 0.6 ( 1
2 Mirage 14.14 1201 14.14 2 _0 211

A DC 1) 27.2 27() 72P . - '

4 j57 5. 5 120 (
5 )157 1-7.i3 120 211.2 l2.2(i

6 Mig X. X 22 - 210 1()
7 Mig 14. 14 2125 14. 14 _11o 14. 14 20'

tIO F10.9, 1310 14.14 lif 14.14 'i

Wronig paranierer efilatac,
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When discrimination performance %\ith multiple distortions for e7, =([2 55 as
tested the results obtained wNere essentiall % thle samne as those for the noise-free case"
in Table 2. Howmever, Mi en In, was increased to 0.25 (Table 4), the mnethod is found
to make an additional error. w\ith the FI05 heiro \s rongl\ classified as a L.)1 0 (test
3. Table 4). A- threshold of 80 in the Hough space \% as wsed for these noise tests.

[ lie sieznal to noise ratio (SNR) n these tests can be computed ais

Mi hre V, is the number oif boundar\, pixels onl the noise-free target. \,' is the
nu1.mber of background pixels added and \*, is thle niLmber of target pixeis
rcimied. For (Y, 0.2(0.25) and the Mira-e uircrafz. SN R 1 11(A310). buLs, Our'
obscrs ed performance is excellent ill the case of poor input SNR.

t, SLti1tNI\RN AND) ( ON(tILSION.h

A new. approach using the basic Hough transform detincd for straight lines has
been suggested for estimating the scale. translation and rotation distortion paramue-
tcrs oif an input test object. The method is capable of mul.1ti-class object discrini ill;-
tion and miultiple-distortion object recognition. lest results, onl aircraft inagerN w\ere
provided and shlown to be excellent for mul-1ti-class discri mi nation. dislttion paraml-
eter estimation and in the presence of noise, The ness direct use of the Hough space
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is possible b\ use of thle new% and etlicient Hough trans form distortin transforma-
tions dev.eloped. A new, hierarchica search method wais dexised that Alms~ efficient
rcaliiation of the proposed concept. This technique also allows the Hough ,pace ito
be spatially quantited. thereb\ further simpli f.is realization- If' thie translation of
thle oh Ject is large. thle use of Moments (or similar methods) to center thle oh -ect.

J ~combtined with a I -D correlation and followed h,, matching with a fewk distortion-
transformed inages provides the cLass. scale. rotation and translation estimates. [or
thle accurate estimation of scale. a higher spatial resoIlutionl in thle Hough space is

required.
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Optical iconic filters for large class recognition

David Casasent and Abhijit Mahalamobis

Approaches are advanced tor pattern recognition when a large number of' classes must be identified
Multilevel encoded multiple-iconic filters are considered for this problem. Hierarchical arrangements o
iconic filters and, or preprocessing stages are described. A theoretical basis for the sidelobe level and noi,4
effects of filters designed for large class problems is advanced. Experimental data are provided for an opt ica
character recognition case study.

I. Introduction systems to achieve large class recognition without th"
Advanced artificial intelligence, symbolic, and other iconic filter problems associated with large trainin-

processors required to operate on large knowitdge sets of data. Experimental data are then provide,
bases ' 2 need techniques to handle a large number of (Sec. VI) to quantify and demonstrate all major point
object classes. We consider pattern recognition appli- advanced.
cations when the number of object classes to be identi-
fied is large. Our approach can be applied to logic
processors (in which the input is a query) and to sym- As an easily obtainable data base we selected recog.
bolic and associative" processors. However, pattern nition of the 62 characters (26 lower-case and 26 upper-
recognition offers a more easily defined problem, and case letters, plus the 10 number digits) in a variety ol
thus we pursue this specific application. We employ fonts. We obtain 80 X 80 pixel images of the 62 char.
an optical character recognition (OCR) case study ex- acters from 15 different magazines: Time, Scientifi(
ample to quantify and demonstrate remarks and re- American (Scienam), Datamation (Datama), Busi.
sults, since such a data base is easily available. Much ness Week (Busweek), etc. We will refer to the fifteer
recent pattern recognition research has addressed al- versions of each character as fonts (although they rep
gorithms to achieve distortion-invariance, i.e., recogni- resent different point sizes of each character as well)
tion of geometrically distorted versions of an object. 4 -' In our experiments, we will view these as in-class varia
In this paper we consider large class problems in which tions. Font identification can be achieved by othe
the number of different objects is large. Incorporation methods.s Our filters are thus designed to be able t(
of distortion-invariant techniques into the filters we provide the recognition of each character independn
discuss can further broaden their use. Since the filters of the input font, but without the requirement to iden
we discuss operate on input image pixel representa- tify the input data font. This choice also allows us tes
tions, we refer to them as iconic filters., data that are not present in the training set used t,

Section II describes our OCR data base, and Sec. III synthesize the filters. Figure 1 shows several charac
reviews several basic iconic filter synthesis algorithms. ters from three of the magazines to demonstrate th
In Sec. IV we advance a theoretical analysis of the similarity and differences in the fonts present in ou
effect of the number of training images and object data base.
classes on the output sidelobe level and the noise sensi-
tivity of iconic filters. Section V describes several III. Iconic Filter SynthesisThe basic filters considered are extensions of on

type' "" of distortion-invariant matched spatial filtet
with attention to our present application. For corr
pleteness we review three types of these filters an

The authors are with Carnegie Mellon Vniversitv. )epartment three classes of filters possible. This section also a
Electrical & (Computer Engineering. Pittsburgh. Pennsylvania lows the terminology to be defined.
1.,o.br We denote objects in one class by Jf,, and objects in

Received 10October 1986. second class by Jg,. The members within each ca.
ss)Ot+ip:15/MT/l1 22636-0850)2.0I)O. are generally different 3-D geometrically distorte
c 1987 Optical Society of America. versions (e.g., aspect views) of each object. In ot
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Fig. 2. M tilt channel frequency plane correlat(,r with F = . iconic

niatched patial filters for large class pattern recognition.'

C

Fig. 1. Typical characters front three different publications: (a) For large class problems we propose the use ot multi-
The ,e'w York Times: hi Datazati,,n: and (c) S('ie'ntifi( American. level multiple iconic filters (specificaily F filters with L

output levels). The output from such a system is now

OCR application the members within each class will be an F-digit word (one output/filter) and is thus capable

different font representations of each input character/ of represerting Ll" different states or object classes (in

object. We denote vector versions (e.g., lexicographi- practice L - 1 states are obtained since the all-zero

cally ordered images) of the objects by f,, and g,, and bLate can also occur for no input object). Prior work on

the filters designed by hk (all are 2-D images, er vec- such filters has shown quite promising results. How-
tors). When f, and g, are similar (such a filter to ever, attention has been given to their distortion-in-

recognize one class must also have information on the variance and no more than four object classes have
other class), we specify a filtpr h so that been considered for use in such filters.Three different classes of such iconic filters can be

f.- !1= [. lg,- h) = 0 ill identified.' " The filters described above are projec-
for all n, where ) denotes the vector inner product tion filters since the formulation specifies only the
operationf"h. We restrict all filters to be linear com- central or peak value in the correlation of h and the
binations of all training set images input object. For many object classes (especially

when the total number of training images N- is small),

control of the central peak value in the correlation
tt..., = 13a.,], 1.3) + N" i.,SI..\ ,I. 2I function allows sufficient performance and specially

low sidelobe levels. We address this issue in detail in

For NI images in [f tJ and N, images in [g,, the N) + N.) Sec. IV. For cases when the sidelobes for one object
coefficients a,, define the filter function. The coeffi- class are larger than the peak values for other classes
cient vector a and hence the filter function h are the (or larger than the value at the center of the correlation
solution of V a = u, where V is the vector inner product function for the same object class), correlation filters
matrix of the data set, and u = ul = [1.. .1,0...Iis canbeused. These filters'" use shifted versions (typi-
set by Eq. (1) to yield 1 outputs for all N, images in cally four) of each training set image to control the
class one and 0 outputs for all N.2 images in class two. shape of trte correlation peaks (i.e., they specify a
The filter is thus specified by fixed value at the center of the correlation function and

a V= . I zero values at ±d, pixels away, horizontally and verti-
cally). These filters require five times the number of

To recognize 1g,,J and reject If J the control vector u I in trainiig images that are needed in the projection filter.
Eq. (3) is simply changed to [0.. .0,1... 1]', andanew and hence N, effects for these filters will be worse.
a set of weights is determined. The best peak to sidelobe ratio (PSR) in the output

A multilevel filter with outputs equal to one for class correlation pattern is obtained with a PSR iconic fil-
one objects and two for class two objects can easily be ter.I' The disadvantage of this filter is that its peak
fabricated using the control vector u - [1. .. 1, 2. .. 2, value cannot be specified. Thus since multilevel en-
3...3]7Tin Eq. (3). As shown, extensions of this filter coding is not possible with such a filter, the number of
to more than two classes are possible. Binary-encoded classes that one can accommodate using multiple PSR
multiple filters can also be employed. In this case the filters is significantly reduced.
outputs from the filters define a digital word (e.g., 10, These three filters are typically used as the filters in
01, 11, for the case of F = 2 filters) that denotes the a frequency plane correlator. Figure 2 shows the clas-
object class (e.g., if the outputs from the two filters are sic frequency plane correlator with four frequency-
both 1, the code word is 11 and the input test object is multiplexed filters at P and four output correlation
in class three). Synthesis of these filters uses the same planes at P.. These F = 4 correlation planes are read
basic technique in Eq. (3) with different u control out in parallel in raster format in synchronization.
vectors. From the F = 4 digit output word obtained for each
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pixel location in the output correlation planes, the
class or category cf each region of the input image at P, - - .
can be obtained." The use of more than four parallel ".
correlation planes is generally prohibitive, and thus
such an architecture can accommodate L" = L' object
classes. To accommodate large class problems, multi- - -- /

level filters (L > 2) are thus essential. P2
These filters can also be applied to associative mem-

ories as detailed elsewhere.' 2  The classic system is Fig.t: Mutiple iconic ret'n fiber associative processor Sy

shown ir Fig. 1. Her- the iipat i-D vector data x atP, ten.

describes an input object, and the F filters at P., are the
columns of the associative memory matrix M. The P
output vector v is the F-digit encoding of the input alVa =\ ,T,,,.
object from which one can decode the object into a
member of one of LF classes, where X, are the eigenvalues of V, and a, are positive

IV. Large Training Class Effects on Iconic Filter constants. The term vu, in Eq. (6) is positive (since

Performance (Theory) these diagonal elements correspond to the autocorrela-
In numerous tests of the iconic filters described in tion of positive images). Similarly X,, > 0 in Eq. (7)
eI numerousotests of the ierfornic f derbe- i since V is a positive definite matrix. Although the

Sec. III we noted that the performance of the projec- terms a 2,X in Eq. (7) are positive, the values of the
tion and correlation filters degraded (i.e., large side- individual , and A,, change with Nr. Hence for in-

lobe levels occurred) as the number of training set ingid the su in Eq (an d h ence tr in

images Nr was increased. For our large class problems creasing NI the sum in Eq. (7) [and hence the scatter in

of present concern NT will also be large, and thus this Eq. (6)] may increase or decrease. It can be shown

issue is of significant concern. Thus we now address that

this issue theoretically for the case of correlation iconic
filters. Solution of large matrices that arise in large
class problems can be addressed by advanced tech-
niques and is not of immediate concern here. The where c is a positive constant. This sum clearly in-
analysis is simplified by considering the Fourier trans- creases with N-1 and is an upper bound on Eq. (7).
form of the correlation plane. Specifically, we consid- Thus the scatter S in Eq. (6) (and hence the correlation
er the average (or mean) gu and scatter S of the magni- plane sidelobes) increases as the number of training
tude of the Fourier transform of the correlation images increases. Extensions of thistheoreticaltreat-
function. The average u value equals the peak value in ment to the various other classes of iconic filters yield
the correlation plane (this follows from Parseval's the same trend for the correlation sidelobes and the
theorem) scatter S to increase with N7.

In numerous tests we also observed (when more
= I I l-!th't/. training images were used) that the dynamic range

where f and h are 1-D sequences, and F and Hare their requirements of the filter and its noise requirements
Fourier transforms, and the summation is over the became more severe. We now advance a theoretical
number of pixels M in each image. We thus write the basis for this effect. We consider the average uF- and
average for an input image f; and a linear combination the scatter Sr of the pixels in the filter image (denoted
filter h (described by coefficients a,,) as by the subscript F). The average and scatter now

considered apply to the image plane representation of
= I1. I = \F , ,,.',.I = F , = . 5 the filter function and not the output correlation

plane. As Sr increases, the variations in the pixel
where L,,, denotes element (k,n) of the matrix V, and u, values in the filter image itself increase and hence so
is element k of the control vector u in Eq. (3). The does the number of levels required in the filter image
scatter S in the Fourier transform of the correlaton is a and also the effects of noise (we will demonstrate this
measure ofthe ripple or sidelobes present in the output experimentally in Sec. VI). The mean of the filter
correlation plane. Using Eq. (4) and the filter synthe- image is
sis of Eq. (3), the scatter is shown to satisfy [_ ]

A, = .I = E \' _, \'nE-f =,

S-7-where a linear combination filter is again assumed, and
where the last equality in Eq. (8) is obtained by esti-
mating Elf,,l by ,,,/M. where M is the number of pixels

We now consider how S varies as the number of in the image. This approximation is realistic for our
training images N1 increases. Since the matrix V is binary images, where c,,,, is the dot product of image f,,
symmetric and positive definite, we decompose it and and itself. From Eq. (8), the mean of the filter is thus
easily show seen to be proportional to the sum of the diagonal V
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weighted by the a,, linear combination filter coeffi-
cients.

Proceeding similarly, the scatter is found to be

;F E[h2l - E*[h] i9a)

+ 1

( 1/I)a T
v a. 19c) Fig. 4. Block diagram of a hierarchical iconic filter system for large

For cross products v.., we have used a similar estima- class pattern recognition.

tion for the expected value E[fIf,,] = v,,,/M. The
second double summation in Eq. (9b) does not include
n = m. The final relation in (9c) assumes 1 - v,,,/M n.- F filters and with a simpler processor such as that of
1 and (v,,,, - vnv;,,,/) - v,..... These approxima- Fig. 3. This filter (and its associated matrix) also
tions are valid for our OCR character example, where requires fewer training set images (less by a factor of 5)
the average auto projection value is v,,, = 100, and the than are needed in the correlation iconic filter synthe-
average cross projection value is v,,,, 50, and the sis. An additional stage with correlation filters is of-
number of pixels per image is M = 6400. From Eq. (7) ten preferable in such a system, since some false peaks
we see that Sp, in Eq. (9) increases with the number of will occur in the first-stage processor, and the investi-
training images NT. This increases the filter's dynam- gation of these points using only projection filters will
ic range. As we quantify in Sec. VI, this makes the force some object class decision for all regions of inter-
effect of noise more significant in filters synthesized est in the input scene (detected by the first filter stage).
from a large number of training images NT. In Sec. V Error correlation"'L is another solution that can aiiow
we advance various ways to reduce NT and yet achieve projection filters to be used directly without an addi-
large class recognition. tional stage of correlation filters to remove false region

of interest peaks from the PSR filter.
V. Large Class Solutions Another modification to the system of Fig. 4 is to

In this section we advance several solutions to the perform feature space analysis in windows around the
large class recognition problem with attention to the candidate region of interest areas indicated by the
degraded performance of iconic correlation filters ex- PSR iconic filters in the first stage. When F feature
pected when a large set of training set images is used. space discrimination functions are used and encoded
In Sec. VI we advance experimental verifications of in an F output L-level manner, a larger no.nlber ot
many of the suggested solutions. We note that our classes (LU) can again be identified and classified. If
theory in Sec. IV applies not only to correlation filters, we restrict analysis to only the central value of the
but also to projection filters if one does not look only at output from the projection filters, these filters are in
the correlation peak point. If projection filters are essence feature space linear discriminant functions
interrogated at the peak point only, the only limitation that can operate on image pixel data (iconic filters) or
on NT is in solving the synthesis Eq. (3). We will use on image features with equal facility.
this fact in several of our suggested solutions. Figure 4 In cases when the object size is known or can be
shows the block diagram of a hierarchical iconic filter bounded, the window around each region of interest
system) The first stage of this processor employs image area can be set and simple techniques can be
multiple PSR filters in a shift-invariant correlator. used to place the object in each region of interest into
The purpose of this first stage is only to locate candi- one of several super classes (e.g., one of 4 sets of 16
date objects in the input field of view. The filters used characters each). For the OCR case we have found
are designed with this in mind, and thus they do not simple object histograms and the number of pixels in
provide discrimination information. To provide en- the character and in different parts of it to work quite
hanced detectability, PSR iconic filters are preferable well to provide such super-class separation. Such in-
for this stage of the processor. The second stage of the formation then allows the use of separate filters, each
processor can employ multiple correlation or projec- optimized on the smaller super class of possible objects
t iai filters in the same processor. These filters allow and each with significantly fewer N- training images.
large class identification (when multilevel outputs are We have demonstrated iconic multilevel multiple fil-
provided), but they can have large sidelobe levels. By ters in which the object class is known and the purpose
using the outputs from the PSR correlator in the first of the filters is to determine the object orientation.'
stage to determine where to look in the output correla- This represents yet another extension of this hierar-
tion planes from the second stage, sidelobe effects can chical filtering concept.
be avoided. In Fig. 4, we show a projection filter For a specific problem (such as OCR) other informa-
second stage, since it allows Lclass identification with tin is available such as: letters lie on lines with regular
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Table 1. Correlation Plane PSR = A/S for Multilevel Multiple Iconic puted with one object (character)/class or font and five
Correlation Filters as a Function of the Number of Object Classes. shifted versions of each (thus NT/5 equals the number

Number Of of classes and fonts). For each case, y and S of the FT
training images NT Correlation plane of the correlation plane were calculated. The resul-

tS/class) PSR tant PSR = A/S is listed in Table I. Assuming PSR >

10 2.04 1.5 is required, we find that only NTr = 100, or 20 object
20 1.98 classes, could be included in one OCR correlation fil-
40 1.76 ter. We note that we have found that this value isCIO 1.48
100 1.52 much less for characters than for other objects, and

200 0.98 thus OCR appears to represent a worst-case guideline.
400 (10 To quantify the effect of NT on the dynamic range ot
9o30 0.006 the filter and its image plane variance, we computed

the mean UF and scatter SF in the filter's image for
multilevel multiple projection iconic filters with dif-
ferent numbers of training images used (with one im-

Table II. Filter Image Plane Scatter SF and Largest Pixel Value as a agent n d w i n g e u se t h n e of

Function of the Number of Object Classes Nr for Different Multilevel age/class and with NT now equal to the total number of
Multiple Iconic Projection Filters. object classes or fonts). These data are shown in Ta-

ble II. In Table II we also include the value of the
.VT Sf (scatterl Maximum pixel value largest pixel in the iconic image plane filter. We note
_ 0.02 0.0 that the scatter (variance of the pixel values in the

15 0.03 0.06 filter) increases with NT. The maximum pixel value in
25 O.1S 0.10 the filter image increases with NT. 'he number of
3,5 0.;35 0.22

0.78 0.82 filter image pixels with large values also increases with
115 0.87 0.9.7 NT. Thus more dynamic range or gray levels are re-
130 0.89 0.96 quired to represent filters synthesized with large NT.
150 0.92 1.29 Also, when noise is present, if the noise changes one of
I17,0 1.05 1.62chne
190 1. W 1.66 the large-valued (or key) image pixels, this will have a
24S 1.33 2.31 much larger effect than if other image pixels are

8O.10 1. changed. Since the number of such key pixels and
their relative significance increases with NT, we expect
noise effects to become worse for large class filters
synthesized from a large number of images. We now

spacings dependent on the font of the input data. For quantify this result and the amount of noise allowable.
this case we find that simple horizontal and vertical The filters considered in subsequent tests were syn-
projections can locate lines of text and isolate the thesized from 62 characters with 4 fonts of each (the
letters on each line. In this case the center of each fonts used were NY Times, Datama, Busweek, and
character can be determined quite simply with such a Forbes). The multilevel multiple projection filters
simple preprocessing step. used F = 4 filters with L = 3 levels (0.33,0.66, and 0.99),

A related issue of concern is training set selection. thus allowing L = 34 = 81 classes, which is sufficient to
In many cases attention to this issue can significantly accommodate the 62 character classes. When these F
reduce N 7. As an example we refer to our OCR case = 4 filters were shown any of the 62 X 4 = 248 charac-
study with 15 fonts of each character available. We ters, the projection values were ideal and perfect 100%
must select at least one image of each character. How- recognition was obtained. Table III shows the worst-
ever, not all 15 fonts/character are required to be in- case outputs (all are within 10- :1 of the exact projection
cluded in the training set. To select the fonts to be values).
included we look at the cross correlations of each and We now consider the effect of noise on the perfor-
select those with the smallest vector inner product mance of these filters. To produce the noise we gener-
matrix entry v,,,. This ensures us of the most new ated a random array of numbers between 0 and 1. By
information for each additional training set image cho- thresholding this array at a, we produced a binary
sen. If the separation between output levels in a mul- noise array N(x,y) with pixels equal to 1 if their value
tilevel filter is AL, we select vm, .. 0.5AL as a useful was 5a. We then applied the same N(x,y) to each
guideline to determine when to include a given font character image with image pixels changed (0 to 1 or 1
image in our training set. In Sec. VI we show quantita- toO) if the corresponding (x,y) pixel in N(x,y) is 1. We
tive data on the ability of iconic filtrs to recognize refer to the result as an image with binary noise. Test
characters in new fonts not included in the training set results for a = 0.5 corresponding to y 2, = 0.25 for the
data. font Busweek are shown in Table IV. Only the worst-

case results are shown (those data with projection val-
VI. Experimental Results ues which departed by the most from the ideal values).

To ,htiaii a quantitative estimate of a number of The projection values are shown with their difference
object classes one can include in a correlation filter, from the ideal values given in parentheses. As seen, 61
multilevel multiple iconic correlation filters were com- of the 62 images were correctly identified. We assume
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Table Ill. Worst-case Tests of 100% Perfect Performance 248 Class Set of Four Multi-level (0.33, 0.66, 0.99)

Iconic Filters

Input test Resipnse or filters F) F4
vharaciter It: I'2 F :I

E. o . 2 t ).66[o ] (1,6(010 O .6599(

T 0.6600D 0 2 .Q9 0 .: :;( 1 0.9899l

0.6599 I.660 I0 (.9899 11 -,99
1 0.99(10 0.:?299 0.330)0 0.901
6 1.; t:)1() , 03299 t.-y99i 0.:100

Table IV. Worst-Case Binary Noise Test Results (a 
= 

0.5, o = 0.25, Busiweek)

Input lest Response land error) For filters FIt - 4
character Fl "2 F:1 F4

: 0,24(0.09) 1).550). ) 0.62(0.04) 0..5 (0.24 t
0" ).570.09) 0.29t 9.04 0.29(0.04 ) 0.91(0.08)

it '0.3S( .OS I 0.3510.]02) 0.60(().061) 1 ,031h0.0.1)

h 0.68(0.02) 0.601,tMG) 0.8910.10 0.62(0.04)

11 0.62(ti).04) 1.85"). 1 1) 0.92(0,07 t 0.9itI0.19

I 0.9110 .o9) 0.24(0.091 (.28((.05 t 0.91 (0.08)
:1 02S(0.i5) 0.20(0 , 1:) 0.:14(0.011 o.56i0. 10)
6 0.27(0.06) 4.2904 0.57 1 .091 0.301i0.031
9 0).28Wt.I)5) 0.58 .l)I1 0.29(0.04t 1 ,:1110.021

Table V. Worst-Case Gray Level Noise Test Results a
2 
= 0.1, Forbes)

I111put est Response land error) tor filters FI -F1
chIrIcLter F1 12 F3 -4

le} 0.17 10,04) 0).9 i (0.0/s) 0.95()0.0)4 0.t90l 0.091q

1.33; .:Ul. I0 (0 021 0.32(.019)tn) I I.01I
proje.tSiSonvalu e.wr(I.rr1 b w 0 l.(in r.ro y 0.) th =0tl2 I W

t 1.n1i 1 0.1cS) in .3 0. 24 (ol 0.0(0.1: if f .er t o t .12 F
t 1 0.9 1 (0l.0s) ~ 0.;.: 11(0. 0 11 0.: 7 t .I1 ( ~ 0I.9ti (0. 0:

a We 1n p g(ry1e nie1 s oisy i.6(g.0) ot .le EfN) thp
tgz 1a( os t .2d(i. o) the6lete.r04 0.th7ter te.0
6; 1). 211l P. 2) 1 i.-IS1 0lO .051(00.t031 0.:, 110i.02)l
9) O. :lH 0.0,5) 0t.ilSt0i.ol2i 0.:35 tl.1121 0.321t0.0i 11

ferenvarncesi to ec i e W et i 0.:19(0.0) T7, Wit lt)ly

projection values with errors below (t)u2 = 0.165 will F4 was 0.75 in error by 0.24) withselevel 0.2 . We
be correctly thresholded reduced the noise threshold to produce noise with -'

Binary noise is typical of the noise expected in OCR l s0.24 (only 0.01 different from the prior value). For

applications.'l We next provided gray-level noise this noisy image of the letter E we found the projection

tests. We generated zero-mean Gaussian noise at dif- of the letter E on the fourth filter to be 0.98 (nearly the

ferent variances and added this to each ieideal 099 level). Thus with a slightly different noise

pixels below 0 to 0 and pixels above I t:) 1, but retained realization or a slightly different noise level (such that

all noise gray levels between 0 and 1. Test were con- key image pixels were not affected), much larger noise

ducted of all 248 images with noise present. The levels can be tolerated. By selecting different projec-

worst-case results for the font Busweek are shown in tion values for different images and by assigning simi-

Table V in the same format used in Table IV. Asseen, lar projection codes to similar characters, control over

60 of the 62 images were correctly identified. The the number of key filter pixels and a reduction in their
gray-level nui~e used had , ,2 = 0.1. When the noise vlei osbe

2 11111sc. ~We nwconsider tsso hs cncfleswt
variance was reduced to aII = 0.08, we obtained 100% cal anaey-ts htht tee never seens sicorrect recognition of all characters. We noterthat the ap ted chares, fol 100t re n s posie

key i p i a ttfilter synthesis. Table VIshowsthe worst resultsin p u t S N R is ab o u t 3 1 for a ',,,i _,=  0 .08 . F igu re 5 sh ow s f oce t n i p t d t n t e f n c e am sse e nsevera biar andray,-level noisy input images co- fonlyst on ro inu daa 62 chare r ccurre. Tssn
rectly identified,.nyoeerri l 2 hrcesocre.Tu

properly designed iconic filters can recognize test data
We now return to Table 11 and our theoretical analy- that they have never seen. By including fonts of sever-

sis indicating that noise sensitivity and the number of al selected characters, full 100'7 recognition is possible.
key image pixels increases with Nr. Refer to Table V, The present tests were included to show performance

which shows that the projection of the letter E on filter with a limited training set.
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Table V1. Worst-Case New Font (Scienam) Test Results (Error From Ideal Level in Parenthesis)

111pu1 tet eR[espornse (and error) for filters FI F"4
charac ter Font F1 :2 :I F4

I'48(0.18) 0.14(0.15) 0.98:1(.0) 1 0.92(0.07lT
S). 5)(0. 10) 0.31 (0.02) 0.28(0,)5 ) 0.67(0.011

s 'Ti es 0.97(0.02) 0.30(0.03) 0.30))0.0: 1 0.:3)-(0..) 1
"2 0.: 1 T 0. 0-41 ) 0.3V2M.01) O.:361 0.;) 1 .01M .02)

4 0.31 iM.02) 0.3t.0.00) 0.69 .i 0.:1 (0.02)

't- , obtained. Other tests involved rotations of the input
object which showed no degradation loss with several
degrees of rotation of the input object.

VII. Summary and Conclusion
The issue of large class object recognition has been

addressed. New filters for such problems have been
described and several hierarchical architectures using
them have been discussed. Attention was given to

A _filter synthesis problems foreseen when the number of
classes is large. A theoretical basis for the sidelobe
and noise performance of such filters was advanced
and quantified by experiment. Initial results are
quite attractive. Hierarchical correlators and multi-
level multiple iconic filters are a viable and attractive
solution. They appear preferable to an exhaustive
search of all available training images.'-' Training set
selection can reduce the number of images necessary
and hence clutter. Proper code selection can improve
performance and reduce various error sources. Near-
perfect recognition of a large number of objects

C (-1000) with only four filters with moderate filter
.. TicaI nori~.y c ha racer with diffie rent niii e varnes: I dynamic range requirements appears possible. Initial

i €'r-r.'tI |~i 4: h})),r I).] t-rr,-hel¢. : * ' __ )OCR tests have quantified these remarks.
o.24 Ilinary noistI.
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ABSTRACT

A new and efficient real time technique to produce a string code description of the contour of an
object, such as an (angle, length) = (0, s) feature space for the arcs describing the contour, is
detailed. We demonstrate the use of such a description for an aircraft identification problem case
study. Our (o, s) feature space is modified to include a length string code and a convexity string
code. This feature space allows both global and local feature extraction. The local feature extracjion
follows human techniques and is thus quite suitable for a rule-based processor (as we discuss and
demonstrate). Aircraft have generic parts and thus are quite suitable for the model-based description.

1. INTRODUCTION

Aircraft recognition is a classic pattern recognition problem recently surveyed II. Many feature
spaces have been suggested for such multiple degree of freedom pattern recognition problems. These
include: moments [2,3 (which require large dynamic ranges and are noise sensitive when made
distortion-invariant); Fourier descriptors 14,5, (which still require feature extraction, computationall.
intensive matching lists, and which do not lend themselves to use of local information or features).
and various curvature features. Our proposed technique handles global and local features, includes
feature extraction with in-plane distortion-invariance and avoids a large matching search.

We selected a st:.ng code description of the object. Other work with similar descriptions [6-9' has
also been used and their VLSI realization discussed !10-12]. However, our string code description (o, s)
= (angle, length) of the arcs on the contour of an object is generated most efficiently and allows
global and local feature space analysis. Global features are necessary for general problems and local
features allow specific problems to be solved quite effectively. The local features we use correspond to
specific object parts and thus allow rule-based analysis (since this is the manner in which humans
achieve identification). Our edge description is different from the conventional chain code [91 and we
do not convert the chain code to an (x, y) ,r other description as others [7[ do early in the processing
period. Our rule-based technique differs from syntactic 1131 techniques. Our rule-base follows a
forward chaining control flow as does SPAM 1141. As our model knowledge, we employ specific
aircraft structural and part information.

Section 2 describes our case study, model base, and data base. Section 3 provides an introduction
and overview of our r-ocessor and our feature space. Section 4 details our new efficient feature space
generation technique and includes typical results. Section 5 briefly discusses our rule-based processor.



2. DATA BASE

The case study we consider is the identification and orientation estimation of 10 different aircraft
Fig.1 shows the top-down views of these aircraft grouped by the functional role of the aircraft In our
tests, all aircraft are 128 x 128 pixels in resolution. Our model base contains different polygon
descriptions of all aircraft and thei, parts, from which any aspect view can be produced quite easily
[15;.

3. PREPROCESSOR OVERVIEW

Our full processor contains five major sections as shown in Fig.2. The preprocessor performs edge
enhancement (this is necessary to produce good peaks in the Hough transform space we will employ)
and generates a clockwise ordered list of pixel coordinates for the contour or loundary of the object
(using classic techniques [16,17[). The feature space produced is a (6, s) description of the angle (o)
and the length (s) of all arcs clockwise in a string code connected object boundary or contour
description. An aspect estimator unit determines if the aircraft is being viewed nearly top-down or if
an out-of-plane distorted image is being investigated. A rule-based or an associative processor are used
(depending upon the aircraft object's distortions). In this present paper, we discuss the rule-based
processor. Thus, in this initial work, we will restrict attention to nearly top-down aircraft views.

4. EFFICIENT (o, s) STRING CODE FEATURE SPACE GENERATION

The first step is to reduce the clockwise ordered contour pixel list to N (approximately 20-30)
vertices. Fig.3 shows a DCl0 (Fig.3.a) and its boundary description with the vertices noted (Fig 31)
The N vertices define N arcs for the boundary, each with a length (s) and an internal Pngle (0)
Fig.3.c defines the angle 0. The result is a (0, s) string code.

The block diagram of our efficient (p, s) string-code generation system is shown in Fig.4. We use
the clockwise-ordered contour list of the boundary pixels (x, y), form the Hough transform (HT) of the
input from the original data, and locate the six major (and true) HT peaks and their (p, 9) values.
We then Hough transform each contour pixel and check if it evokes a peak at one of the (p, 0) six
major HT peak parameter locations. This assigns most contour points to the six major lines in the
image and gives automatically (without time-consuming trigonometric operation) the angle 5 and the
length (s) of these lines. Only a small fraction of the pixel points in the contour list remain to be
assigned 0 and s values. Each of these is a connected set of pixels that lies in a gap butween
previously assigned points. We achieve the (0, s) description of these pixels into lines by a
conventional split-line fitting method 118,191. This split-line technique is computationally expensive.
but (with the six major lines and our HT technique) ?his needs only to be applied to a significa: tly
reduced number of points in the contour list. Thus, this technique generates the full (o, s) string code
description quite efficiently.

A HT converts lines in the input into points in a (p, 0) parameter Hough space, i.e. a, coordinates
corresponding to the normal distance (p) and the angle (6 with respect to the x axis) of the normal of
the line, with six peak heights proportional to the number of points on the line (or the length of the



(a) U.S.A. military aircraft: (1) B57 (2) F104 (3) F105 (4) Phantom

(b) Foe iitary, aircraft: (I) mi;2 e

(c) Commericial airliners: (1) B727 (2) B747 (3) DOIO (4) Swearingen

Figure 1: Image Data Base (128 x 128)

Rule-Based
Processor

Input Feature As .pecl as
Binary-& Preprocessor _* Spc -0.Estimation Ofienlal onx
Image Generation Cnfidece

Associative
Hl.Processor _j

Figure 2: Overall Processor



Y C (X3,Y3)

B
(X2.Y2)

(a) DCIO (b) DC10 vertices (c) Angle o Definition
Figure 3: Example of vertices describing an object boundary (Fig.3 a and b)

as arcs of length s and internal angle p (¢ is defined in Fig. 3 c)

Elave Tra, storm

Binary Reverse HT Digital
Lnie and Angle Split-Line AspeckaeA inment Fitting Estim;

L Contour ist ,

Preprocessor Feature Space Generation

Figure 4: Block diagram of an efficient (o, s) string code processor

line). Fig.5.a shows the HT for the DC10 with the nose vertical. Fig.5.b shows the HT for th
with the nose horizontal. The two major peaks in Fig.5.a lie on the O= 0 0 line and in Fig.5 b
on the O= 90 0 line. These two major peaks denote the presence of the fuselage and its orienta
Fig.5, we see six major peaks, however this does not always occur (when noise, quantizatior
image resolution, and 3-D roll and pitch distortions occur). To demonstrate this and techni
overcome these problems, we show (in Table 1) the 10 largest LIT peaks obtained for th,
oriented at 120 °

. This demonstrates specifically that the largest six HT peaks do not corres]



the major lines in the image, specifically HT peak 6 and 7 are false peaks that are larger than pe
(which is the next, largest true peak). We note 1201 that such false peaks occur close to the true
(within three pixels for our aircraft data). Thus, we employ an algorithm that ignores LIT s
peaks that lie within four pixels of the large peak. Employing th;s rule, the six proper p
corresponding to the six major lines in the aircraft image emerged (Table 2). Table 3 lists th
aircraft lines corresponding to the six major HT peaks and Fig.6.a Shows the lines in the air(
image itself. Fig.6.b shows the resultant final (0, s) image with all vertices obtained (including t
obtained by the split-line fitting technique).

An efficient technique to assign the O and p parameters of the six HT peaks to point in the con
list is now detailed. To achieve this, we transform each pixel coordinates (x, y) in the clock
contour list into a sinusoid. This sinusoid needs only be evaluated at the six 0 values of thE
dominant HT peaks and at the p coordinates within each. Thus, these HT operations on the con
list are easily achieved. Since we expect a number of successive pixels in the contour list (thosE
each arc) to correspond to the same HT peak point, the processor can be quite fast (and very effici
compared to typical techniques involving extensive trigonometric calculation).

We now discuss the descriptions we employ of the string code representation of the object
symbolic descriptor. We first consider the full (0, s) string code with the exact analog values fo:
angles and lengths. Next, we consider a convexity string code. This lists only the convexity of
angles of the arcs in the boundary representation as convex V (if o < 180 ) or concave C (if 0
180 0

) . Last, we consider a length string code which lists only the length of each arc as : very slh
short, medium, long, and very long. These are expressed in terms of maximum differ,
A = Lma-Lmin in the length L of the arcs for the input image. Each length region is A/6 ex,

for the medium length region which is A/3 in extent. These different symbolic string
descriptions of the object contour are found to be quite useful for global and local rule-b:
processing, as described in Section 5.

5. RULE-BASED PROCESSOR

Our rule-based system employs if-then rules, a context-limited and rule-ordered cortrol stral
and forward chaining with five rule groups used as we now describe. The first rule group (star
rules) locates the fuselage.

The second rule group concerns substructure search rules. The purpose of this second rule grou
to locate all separate regions of an object and to divide them into left (L) and right (R) regions
respect to the fuselage. We first extract the fuselage and all vertices corresponding to it. .
separates the contour list into L and R regions. We group these into separate connected reg
(closed polygon boundaries) corresponding to parts of the object. For each such region, we calcu

-10 its area, perimeter, compactness, and its position with respect, to the fuselage. Various rules are i

lie to determine the type of each region. Three representative examples are given below:

In
the

to

710
to
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Figure 5. HT of DC10 with nose oriented vertical (a) and horizontal (b)

Hough Peak p(pixel) O(degree) Peak Heigh

1 3 165 10
2 -19 114 9

3 -5 60 9

4 19 6 9
5 5 60 8
6 -20 111 7

7 20 9 6
8 3 135 6
9 -7 63 5

10 -5 162 5

Table 1: Data on the 10 largest peaks for a DC1O with its nose at 120

Hough Peak p(pixel) O(degree) Peak Heigi

1 3 165 IC
2 -19 114

3 -5 60
4 19 6

5 5 60

6 3 135 (

Table 2: Data on the six largest HT peaks using our false peak algorithm.

The six peaks noted are the correct ones.



Corresponding Aircraft Part

Right Line on Fuselage
Left Line on Fuselage
Right Front Wing Line
Right Rear Wing Line
Left Front Wing Line 7
Left Rear Wing Line

(a) (b)
Table 3: 6 major lines in an aircraft Figure 6: Aircraft Image with

(a) only the six major arcs and (b) all arcs

Rule 1: Wings are the largest regions in L and R. They must have the proper
spatial relationship to the fuselage.

Rule 2: If the convexity symbolic code for a region has all vertices convex,
then this region is a wing with no engines etc on it.

Rule 3: If the convexity symbolic code for a region has two concave vertices
out of four adjacent vertices and if this correspond to short arcs, then this
region is a wing with an engine etc on it.

From the location of the concave vertices and arcs of short length, the position of the engine et
(refered to as a "blob") or small structure on the wing (or fuselage) can be determined. We discu
this further below. Fig.7 shows examples of a wing region with no engine (Fig.7.b) as detected from it
convexity code (Fig.7.a). Fig.8 shows an analogous example when the convexity code (Fig.8.a) sho
several C sections and hence indicates the presence of an engine in the image of Fig.S.b. Follokin
such rules, we can segment the L and R regions into parts as shown in Fig.9 (wings, tails, and blobs)

The third rule group we use provides a check on the top-down orientation estimation (this
obtained from the number of regions in L and R, the areas of these regions, and the symmetry of th
L and R sections), yaw estimates (these are obtained from the 0 coordinate of the fuselage peak in th
HT space), and roll estimates (from the symmetry or ratios of areas in regions L and R).

The fourth rule group concerns substructure rules. These are intended to identify the small or locz
features or object regions or parts. The best example of this cozacerns "blobs" on wings an
specifically whether these are engines, missiles, or fuel tanks. For the image data base we considerec
we note (from Fig.i) that if the blobs appear in the center of the wing, the blob is an engine (e.E
DC10); and if it appears on the tip of a wing, it is a missile (e.g. F104).

The fifth rule group contains classification rules. We note three examples below. There ar
approximately 40 rules used in totalThe following are intended to be representative examples. Befor



4Q
Vertex Convexity Code

1 V
2 V z

3 V
4 V

(a) (b)

Figure 7. Example of a convexity code (a) for a wing region with no engine (b)

Vertex Convexity Code

I V
2 V

3 V
4 C 4

5 V
6 V
7 C

8 V

(a) (b)

Figure 8: Example of a convexity code (a) for a wing region with an engine on it (b)

L

Figure 9: Representative left (L) and right (R) segmented regions of an aircraft



discussing these, we note one additional parameter included in our feature space parameters the
angles 01 and 02 that the wings make with the fuselage at points A and B (see Fig.10).

Vertex A

Figure 10: Definition of the internal angles 01 and 02

at vertex points A and B in an aircraft

Using these blob and angle parameters, we note three rules as examples:

Rule 1: If a blob is present on a wing, and if it is an engine (i.e. in the center
of the wing), and if the angle 01 at vertex A (Fig l) > 245

then the aircraft is a Swearingen.

Rule 2: If a blob is present on a wing, and if it is an engine, and if the angle 01

at vertex A < 245 *, then the aircraft is a DC10.

Rule 3: If a blob is present on a wing, and if it is not an engine (i.e. it exists
at the tip of the wing), then the aircraft is an F104.

Comparison of the Fig.] images and these rules shows that these rules correctly classify these aircraft
noted.

6. SUMMARY AND CONCLUSION

We have advanced an efficient HT technique to assign lengths and angles of most arcs to a
clockwise pixel coordinate list of the contour or boundary points. This is complemented by a split-line
fitting algorithm which need be applied only to small gaps in the residual boundary. For the case
study of an aircraft data base (which is very suitable for model-based description), we separate the
object into L and R regions, each described by connected polygons, each of which are identified as



wings, tails, fuselage, engines, etc. Convexity and length symbolic string codes aid this separatio
This feature space is most efficiently obtained and it allows us to apply both global features (suiltabl
for general pattern recognition) and local features (necessary to handle distorted objects and partill
images). The local features used correspond to specific object points (easily obtained and described 1
our symbolic notation) that humans also relates to. The feature space and case study considere
(aircraft identification) lends itself naturally to a rule-based processor. Examples of rules and their us
in the identification of aircraft classes were provided. The general technique is the most flexible. Whe.
augmented with an associative processor, the potential of the system is even further increased.
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5. REAL TIME LIQUID CRYSTAL TELEVISION
FEATURE SPACE GENERATION
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Real-time deformation invariant optical pattern
recognition using coordinate transformations

David Casasent, Shao-Feng Xia, Andrew J. Lee, and Jian-Zhong Song

The well-known scale and rotation invarian polar-logarithmic coordinate transformation is used t, achie%
in-plane distortion invariant pattern recognition. The coordinate transform is proch(oed hv a vompoter
generated hologram on a laser printer. Attent ion is given to weight ing terms in the output and their effecl ol
resolution and the num ber of input plane pixels removed near the origin. The opt ical ly produced co,,rdm fat
I ransfortmed input pattern is interfaced to a correlator by a pocket liquid crvst ai TV to provide real-1ii
provessing. Experimental results are included.

I. Introduction with a Fourier transform lens to perform the lnr -

Optical pattern recognition using a matched spatial coordinate transformation. The use of a holograrr
filter and a correlator is a well-known technique.t It is consisting of many interferometrically produced holo
advantageous due to its high speed and parallel pro- graphic optical elements (HOEs) for coordinate trans
cessing. But the conventional correlator cannot rec- forms has been demonstrated.' The princinle of usin
ognize scaled or rotated images of the reference object. a CGH for a coordinate transformation was 4emon-
For example, for a 1% scale change of the reference strated earlier for the Mellin transform" and for th(
object, the SNR of the resultant correlation peak can circle-to-pointi and nr - I transformations, A dis
be 10 dB down from that of the autocorrelation, and a cussion of the fabrication of our CGH is presented ir
20-dB loss can occur for a 1.70 rotation of the input Sec. II together with several issues associated with tht
from the reference." This disadvantage limits the po- optical coordinate transformation and their effects or
tential applications of the conventional correlator. our real-time correlator. The LCTV and a TV camerE
One solution to these problems is development of a are used to connect the coordinate transform prepro
space variant optical processor which is realized by cessing system to a conventional optical matched spa
applying a coordinate transformation preprocessing tial filter correlator in real time. The LCTV intro
operation to the input and reference data. :' Coordi- duces a phase distortion in the wavefronts passin.
nate transformations, such as the logarithmic transfor- through it which has been corrected using a phase
mation (which results in a Mellin transformation, conjugate filter.8  Real-time scale and rotation invari
which is scale invariant), the polar (r - 0) transforma- ant pattern recognition is demonstrated experimental
tion (which results in rotation invariance), and the ly in Sec. III. Our conclusions are advanced in Sec. IV
combination of the two:' (the lnr - 0 coordinate trans-
formation, which results in scale and rotation invari- 1I. Design of the Coordinate Transformation CGH
ance), have been reported. The system to achieve the lnr - 0 coordinate trans

Here we report the optical implementation of defor- formation is shown in Fig. 1. The input f(xy) is place(
mation invariant real-time optical pattern recognition in contact with a continuous phase CGH with trans
using a computer-generated hologram (CGH) and a mittance h(x,y) = expD'¢(x,y)], where ¢(x,y) is th4
liquid crystal television (LCTV). The CGH is used phase distribut.ion of the phase filter. Lens LI formi

the Fourier transform of the product f(x,v)h(x,y) a
the plane P, where we find

F ,I.,) = fA. ,N expL . ... )I

The authors are with Carnegie Mellon University, l)epartment of
Electrical & (omputer Engineering, Pittsburgh. Pennsylvania x expl -pi2. \f1 )xLru +\c)]dxd3. II
15213.

Received 12 September 1986. where X is the wavelength of the laser used, and ft. is th,
01,1: -6935187/0)50918-05$02.00/0. focal length of lens L1 . For the lnr - 0 coordinat,
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Ox.+v = In x + y = I ', L1  P,

r(.. I = -tan -', I/xi. (2)

and the integral in Eq. (1) can be solved using the Li Lhtr
approximate saddle point integration method.!' For
the coordinate transform in Eq. (2), a continuous L
phase solution O(x,y) exists since u(x,y) and v(x,y) Input CGH Coordinate
have continuous partial derivatives and since the par- f(a,y) h(xy) Transform
tial derivatives of u with respect to y and of v with F(uv)

respect to x are equal. The desired phase function is Fig. 1. Schematic of optical coordinate transformation system.

P Ix..% (2r1Xf 1 )[x Ix
2 + N,-'. _ 2 tan- (y/x) - xj. (8)

camera at P of Fig. 1, and the electronic output frorr
A. CGH Design the TV camera is then fed to an LCTV in the inpul

There are several techniques that may be used to plane of an optical matched spatial filter frequenc3
form the desired phase filter."' Since the amplitude plane correlator. We now relate the space bandwidtl.
transmittance of h(x,y) is one, we need only record the product (Nr X N,) required in the lnr - 0 space at P, tc
phase function, and since this is recorded by position- the input image space bandwidth product N X N = Y:
ing the data on the mask, binary CGH recording tech- at P0. The radial Ar and angular AO spatial sampling
niques can be used. Since a continuous phase function increments are both \2/N, i.e., a factor of N2 larger thar
solution exists, we thus use a binary computer-gener- the reciprocal of the number of input samples N. In.
ated interferogram' 'for the CGH. The interferogram cluding the effect of the number of samples M omitted
is the interference pattern of ¢(x,y) and a plane wave near the origin of the input image pattern, we find
reference at an angle 0. The maxima of this interfer- N, = N In(N/M)/x 2, N, = (4 N/N 2)tan-tN/2). I
ence pattern (the locations of the interference fringes
or the lines that must be plotted on the CGH) must These results follow from others:' extended to the cas(
satisfy of an lnr - 6 transform. The 2-D space bandwidtl

product required at P, to sample adequately the lnr -
, - p xI = 2r. 14) plane is thus

where n is an integer which denotes different fringes V N, = 2N- In(N/lM) tan-'(N/2) = wr e ln)N'/l). N 8
and where the carrier frequency a = (sin 0)/X. The
recorded CGH is generally photoreduced onto film, where the final result follows for large N.
and Eq. (4) describes the final CGH, To avoid over-
lapping between the first-order and second-order dif- C. Intensity Weighting Effects
fracted waves in the diffraction plane PI, a must satis- To evaluate Eq. (8), we must select M. To do this, w(
fy'' consider the weighting present at P, and then obtain

. r h:(A.x )new criteria for selection of M and hence the P resolu
(.51r,) Max ,,tion required for a given input Po resolution. Thi

intensity of each transformed point (U,,,Lr,) in the P
Inserting Eq. (3) into (5) with x,, and Vax being the output F(u,v) is'
maximum size of the input image or the CGH, we
obtain

o > :01/.f) h(c . + ,r's,' . II;)

This result has not previously been given full attention where 0 denotes the partial derivative of O(xv) wit'

and is of concern since it affects resolution, as we respect to m and n and where (x,,,ya) is the input poin
adisss in cocr icWe nte hatfwtects r only ahe in Po that contributes to the output point (u,,,L',) in P
discuss in Sec. IC. We note that we detect only the From Eq. (9), we see that the P, pattern associate
first-order diffraction pattern at P. In the experi- with a given input Po point depends on the intensity (
ments that we performed, we used the parameters x,,,, each input point and its position in Po. Our concern1

5 mm, yma = 5 mm, , = 0.6328 mn, and J = 400 mm. the effect of the positional weighting factor given b
From Eq. (6), we then find a > 23 line pairs/mm is the square radius r2 = (x2 + yN2) of each input point i
required. We used n = 400 fringes in Eq. (4) for a = 40 Po. The effect of the r2 = (X2 + y2) weighting factor
line pairs/mm. We solved for the various (x,y) that best described for the case of an input f(x,y) pattern
satisfy Eq. (4) for each value of n, connected these uniform intensity. In this case, points further fro
points, plotted the associated lines on an Imagen 300 the optic axis in P will be brightest in the coordinal
laser printer, and then photoreduced the plot to the transform pattern at P, and points near the center,
final CGH size of 10 X 10 mm. Po (near r = 0) will be the dimmest in P. This

attractive since these points must be omitted in the I
B. Space Bandwidth Product Requirements coordinate transform. Tapering of the input illum

This lnr - 0 input image representation space (that nating light can conceptually correct this effect (e
is scale and rotation invariant) is detected by a TV cept near r = 0, which is not of concern since this regi(
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is blocked). Without correction for this effect, a CooridnateTransform

scaled input image will result in the same shaped P, (Input)

pattern but with a different intensity (larger intensity Aprtur
if the input object is larger). When this transformed PC , L. P L.
pattern is used in a correlator, the r 2 weighting is of no I
concern, since the matched filter would also include
the same r2 weighting. j

Our present concern with the r2 weighting term in . f f f f
Eq. (9) is it effects on M and the size of each diffraction LCTV MSF

order in P1. Points near r = 0 in P0 map to high Fig. 2. Real-time optical c,,rrelator system schemati(.
frequencies, and these frequencies approach infinity
for P0 points approaching r = 0. Thus separation of
diffraction orders at P, becomes impossible and re- P0 input images. The P, output transformed pattern
quires an increasing a unless M points near r = 0 are was found to shift horizontally by lna for input scalE
omitted at P0. The a calculations in Eqs. (5) and (6) changes a and to shift cyclically vertically proportional
considered such issues but do not readily allow one to to input rotations. This verified the use of the CGH
select M. Fortunately, the transform intensity of the for the desired lnr - 6 coordinate transform.
points near r = 0 is so weak due to the r 2 attenuation To perform deformation-invariant optical pattern
factor in Eq. (9) that they can be ignored, and thus P, recognition in real time, a spatial light modulator such
diffraction orders of finite size result. If we assume as the LCTV is required to record the input P, pattern
that plane P intensities for which the weighting factor and often also the coordinate transformed pattern at
in Eq. (9) is <1% of the maximum can be omitted, we P, of Fig. 1. If the P, data are used as a feature space.
find that this corresponds toN/M = 10 in Eq. (8). The the system is modified slightly12 to provide a shift
space bandwidth product NN,, at P, is now related to invariant P, output which can then be detected and fed
that of the input (N'2) by (NN,) = 7.2A-2. In our to a feature extractor and classifier. In this paper, we
system, the coordinate transformed image at P, is fed concern ourself with the case when the P, data are fed
into the LCTV, which has a square resolution of 120 X to the input of a correlator (as shown in Fig. 2). In this
120. For this output P space bandwidth, the resolu- case a device such as an LCTV is required to contain
tion that our CGH can accommodate is -40 X 40. The the P1 data from the system of Fig. 1. We achieved
choice of M affects the amount of scale change that the this by feeding the TV detected output of the P , pat-
system can accommodate," but our N/M = 10 choice is tern of Fig. 1 to an LCTV at P of Fig. 2. The phase
sufficient for a large range of scale. errors of the LCTV are corrected for by the phase

Another issue of potential concern is the intensity of conjugate hologram (PCH) shown.' A matched spa-
the output from a correlator with P1 as an input. tial filter of the coordinate transformed object to be
When the input image rotates, the transformed output recognized is formed at P., with the beam balance ratio"
image is cyclically displaced along the vertical axis at chosen to yield the optimal correlation SNR. The
P1. In a correlator, this can result in two correlation output correlation is produced at P1t, where it is detect-
peaks rather than one. The intensity of the two peaks ed by a camera and displayed on an isometric display
will sum to the intensity of the single autocorrelation The aperture at P, passes only the first-order diffract-
peak, and one peak will always be at least 50% of the ed pattern from P 1. (Several diffracted orders exist
intensity of the autocorrelation peak. This effect can due to the regular pattern of pixels on the LCTV.)
be avoided by synthesizing a CGH and the matched This removes the effect of the fixed LCTV pattern and
spatial filter to cover a rotation range from 0 to 47r improves the SNR of the output correlation obtained.'
rather than 0 to 27r. For the case of a scaled input, the The video output from the camera in P is amplifiel
PI pattern shifts horizontally depending on the scale and partly saturated to improve the output displa,
factor and intensity of the pattern increases for scale and reduce the r2 weighting factor in Eq. (9).
increases. A correlation output threshold set based on The results of our real-time experiments on the sys-
the minimum scale expected (this also affects the tems of Figs. 1 and 2 demonstrating scale and rotatior
choice of M) should thus be used (or different correla- invariant pattern recognition are now discussed. Fig-
tion plane thresholds can be used for different vertical ure 3 demonstrates rotation invariance. Figure 3(a'
correlation plane coordinates). Alternatively, from shows the original input image used, the letter X, ancI
the dc value of the Fourier transform of the coordinate Fig. 3(b) shows the autocorrelation of its coordinate
transform of the input, an estimate of the energy of the transformed pattern with the peak in the center of th(
object is available and can be used to set an adaptive P:j correlation plane. The size of the input character,
correlation threshold. was -50% of the input field of view with an equivalent

resolution of -20 X 20 pixels in P, of Fig. 1. Figur(
Ill. Real-lime Deformation Invariant Correlation Results 3(c) shows the lnr - 6 coordinate transform of Fig. 3(a)

The CGH was tested in the system of Fig. 1 with This was used to synthesize the matched spatial filtei
various input aircraft and letter images. The output at P, of Fig. 2. Figures 3(d) and (e) show the isometri(
P, pattern in Fig. 1 was seen to remain unchanged displays of the P:1 output correlation plane for 30'

(except for shifts) for rotations and scale changes in the rotations of the input image clockwise [Fig. 3(d)] anc
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counterclockwise [Fig. 3(e)J, respectively. These fig- coordinate transformed reference yields negligible
ures show a large correlation peak whose shape and otu Fg () sepcesnetecodnt
peak value are quite constant. This indicates the oc- otu Fg () sepcesnetecodnt
currence of the reference object in the input image. transformation is one-to-one and thus does not make
The output correlations clearly demonstrate that the cross -correlation response larger.
correlation peak is maintained under input rotations IV. Conclusions
and that it is displaced up and down proportional to The use of an optical coordinate transform (CT)
the rotations of the input pattern. system, employing a CGH and a lens, in series with a

The scale invariance of our real-time system is dem- conventional optical correlator has been demonstrated
onstrated in Fig. 4. The same original image and in real time for in-plane deformation invariant pattern
matched spatial filter were used [Fig. 3(a)]. Itscoordi- rf
nate transformed pattern [Fig. 3(c)] and autocorrela- rection the CTin syte i indtera to thelcorre-
tion [Fig. 3(b)] were shown earlier. Scaled versions of rsystem singtr ata al nTiamera rt
the reference input, as shown in Figs. 4(a) and 4(c),' -I u system , totro e daT isn freal time.lar
w ith scale factors of 1.3 and 0.7, respectively, w ere used ,r tr r h i ch yilds sal and ot ti o i nvri-
as inputs. Figures 4(b) and (d) show the isometric lnre Tns se o eform which yildrcaeanoration a-
iplas ofe i t ches i s t the correlation was detailed with attention to the recording technique.

plans. Nte n thse fgurs tht th corelaion space bandwidth required, and effects of an r- 'weight-peaks are still largely unchanged in shape and are now ing term. The scale and rotation invariant real-time
displaced in the horizontal direction from that of the correlation performance of our system was experimen-
autocorrelation in Fig. 3(b) proportional to the loga- tallydnstrat reultsusiteineen
rithm of the scale change of the input. We note also llT eptraoem aed reutse higher -neolionive
that the value of the correlation peak varies for a scale LCTVs shol ild ipd eltor erfomane
change of the input as expected since a larger pattern t m o e .oormnce
(containing more energy) results in more energy in the aros tipesr
output plane. The cross correlation of an unknown The support of this research b the Air Force Office
input image [Fig. 4(e)] with the matched filter of the of Scientific Research and theJet Propulsion Labora-
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6. REAL TIME OPTICAL COMPUTER
GENERATED HOLOGRAM LASER PRINTER
REALIZATION
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Computer generated hologram recording using a
laser printer

Andrew J. Lee and David P. Casasent

The use ofa laser printer tor recording various types of computer generated holograms is discussed, a
results are presented.

Computer generated holograms (CGHs) have a vari- have developed to use the Imagen printer fc
ety of uses in optical information processing.t' Many synthesis. We also quantify accuracy measur
CGH recording devices can be used, 7-1' but few are taken on the printer.
inexpensive and easily available to the researcher first There are a large variety of CGH encodin
hand. Recording with a Calcomp plotter and subse- niques possible to produce grey-scale and cc
quent photographic reduction of the pattern is the value data with binary recording devices such
most accessible form of CGH recorder. However, it is printers. To record a 2-D rectangular array
limited in its flexibility, resolution, and reproducibili- with different transmittance at each point, t]
ty, and it requires photographic reduction of large 20- array is specified, and halftone techniques (usi
x 20-in.- patterns. The advent of laser printers and defined glyphs or the shading command in im
their reduced costs makes them attractive CGH re- are used to produce the desired transmittance
corders. We emphasize the use of the Imagen 300 point. For spatial filtering and matched spatia
laser printer,' although the same techniques apply to ing applications, other encoding techniques'
other laser printers. possible but follow from the above basic techni,

The Imagen 300 is commonly used to print letters pictorial example of a halftone encoded ima
and other documents using word processing software. duced by the Imagen printer is shown in Fj
In this mode, the word processor generates a file writ- demonstrate the results and concept. The ima
ten in imPRES code. This file is fed to an image sists of 190 X 190 glyphs which encode 64 differE
processor (IP) within the Imagen printer which stores levels.
and interprets this file and converts it to a raster. This For more general CGHs, the required patte
raster format is necessary to control sequentially the sists of a set of curves, each described by an ei
writing laser beam. The print engine within the Ima- and (for the case of a binary pattern) one must
gen contains the laser and optics which perform the all the points satisfying each equation and prod
printing of the information on paper as a high resolu- resultant plot of these curves. The imPRESSco:
tion binary pattern. The im PRESS commands typical- l)HA\V-PATH draws a curve through a number of
ly used define English and Greek characters, fonts, and A file of all these DRAW-PATH commands (one I
symbols. To employ the device for CGHs, the user can curve) and the absolute pixel locations of pc
employ imPRESS to define his own fonts by defining each are then produced. This is referred tc
glyphs, tne basic cells used in halftone printing of grey- graphic imPRESS file. This file is then sent
scale imagery. The user can also employ imPRESS Imagen printer'where the IP interprets the it
commands that draw points, lines, and arcs and per- commands and produces a raster file which
form area shading. We now detail two procedures we which pixels on the page should be turned on

black). The print engine then produces the sl
pattern. An example of such an output is s
Fig. 2. This is a continuous phase binary s)

I'he atthors are with (Carinegie Mellon 1.iniversjv. leparlmenl of' CGH that implements a polar-log coordinate t]
Electrical & (C omutler Engieer i iig. Iiltirgh. lennsv in mation on a 2-D input image. This CGH is us
1,,21:1. necessary for space-variant scale and rotation

Received 9 line 19SI6 ant pattern recognition.'I
0svl.:M)/0lil ti- i$ii2.iil/i. One issue in implementing these concepts
(1.M (ptical Y,,iety vi America. absolute pixel positions must be used rather tf
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Fig. 1. Grey scale image produced on the Imagen laser printer as an Fig. 2. Inagen laser printer produced continuous phase h
example of a CGH with halftone grey level spatial transmittance vynthetic ('(;H that achieves a polar-log coordinate trar

mation.

ial
ventional units (inches) of distance. This issue arises,
since when one uses a CGH in an optical system, its
physical size must be calculated and specified, and the
CGH must be produced to exactly this size. Anotherissue is that the imPRESS commands are written as hex

its character pairs, and pixel locations are written as four

hex pairs. This introduces some difficulty in use and
debugging if the user is unfamiliar with hex represen-
tation and with the hex description of all imPRESS
commands (since to read an imPRESS file, all hex char- A

acters must be converted to their decimal or command
kta equivalents). The first technique we use to generate

the graphic imPRESS file is to write FORIRAN subrou-
tines that set (x = 0, y = 0) at a given absolute pixel

.ch position and then convert all (x,v) pairs from distance
units to pixel values (by dividing by the 300-pixel/in.

r resolution of the Imagen printer). The result is an
(x,y) sampling at 300 pixels/in. We have found this

to technique to be the most accurate, although it is the

most difficult to use and debug. The second tech-
in - nique we use to generate the imPRESS file uses DISS-

tey I.A graphics software called from a simple FORTRAN Fig. Block diagram of the to CH synthesis echnique,

program. The points (x,y) to be connected are left in the lmagvn laser printer.
- inche3 (or any distance unit), or as pixel indices, and

on are then connected via a series of ('ONNPT commands.

het The software then converts these DISSPILA commands
into imPlRESS commands and the (xy) points into pixel racy of the printed output are now addressed.

nd indices. This technique is much easier to use since the 300-pixel/in. resolution is misleading, since adja
ts. user need not know all imPRiEsS commands or their hex pixels overlap to provide attractive continuous ch
ch equivalents and how to convert from inches to pixel ters. Measurements by us indicate that a pixel is C
on indices to hex characters. However, each pixel on the X 0.175 mm-' and that adjacent pixels overlap hori

printed page is not separately controlled, and pixel tally and vertically by -50% or 0.09 mm. Thu,
'SS points are not always placed in an exact desired posi- center-to-center spacing of adjacent pixels is C

tion (due to sampling and interpolation deficiencies in mm, and each pixel is 0.175 mm in size in one dii
ed the I lSSl'lA software). imIssi'ix also produces auto- sion. As a result, the sequence of three pixels amatic margins, thus eliminating many possible points OFF, ON will not show a central OFF pixel. Thu,ed on the edge of the page and hence reducing the total printer resolution is 150 nonoverlapping pixel
in number of pixels one can record. We now quantify However, each pixel location can be specified to

many of these above remarks. These two techniques part in 300/in. There is a slight variation in the "
or and the Imagen system are shown in the block diagram of pixels due to the varying density of the toner.

flow chart of Fig. 3. variation is quite small [(below several microns) a
The pixel size, overlap of pixels, and positional accu- random and could not be measured with our avai'

iat
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techniques, even after 20X magnification]. The abso- tion is satisfied. For conventional text recordir
lute positional reproducibility of points was tested by command is not used, since it considerably redu
writing alternate pixels and lines on the left and right printing speed possible. The standard IP h
side of a page and on the top and bottom of a page. In kbytes of memory for storage and processinj
all cases, straight lines resulted that were aligned ex- have added an additional several megabytes of i
actly to the desired pixel position. Thus the Imagen ry to this to accommodate high resolution lar
printer used with the imPRESS commands is reproduc- CGH synthesis. For an 8 X 10 = 80-in 2 printin
ible within the specified pixel resolution and within the printer can support 80 (300)2 = 7.2-M pixel
excellent measurement accuracy limitations. To cali- CGHs. The need for a large memory is thus imr
brate distances to pixels and to quantify the absolute in CGH synthesis.
positional accuracy, the outline of a square 1200 X 1200 CGHs are increasing in use and popularity
pixels in size was recorded using the imPRESS com- ease with which they can be produced on inexr
mands. The two dimensions of the resultant plot were and generally available laser printers should
measured to be equal within 0.5 mm (0.02 in.) or 3 CGH techniques to more researchers.
pixels. Thus the absolute positioning accuracy of the
printer is 3/1200 or 0.25% over a distance of 4 in. It is References
important to note that the spatial size of the square 10 . Bryngdahl. "Optical Map 'ranstormations. Opt. C
CGH pattern was precise (i.e., 4 in. within 0.02 in., to, 164 (1974).
corresponding to 1200 pixels) when written directly by 2. ). Caasent and C. Szczutkowski. "Optical Mellin Tr
the imPRESS commands. When the same 4- X 4-in. t'sing Computer Generated Holograms." Opt. Commur

square (1200 X 1200 pixels) was written using DISSPLA (1976).
software to generate the imPRESS file, the size of the :3. S. H. Lee. Ed.. International Confercence on Crnputci
square produced was 3.76 in. This is due to sampling atod H',,raph3 , Proc. Soc. Photo-Opt. Instrum. E

and interpolation effects in the DISSPLA software s98:).
(whose source code is not available). This represents 4. .1. Cederquist and A. Tai. "Computer Generated Holog

no major problem, since one simply scales the desired Geometric Transtormations." Appl. Opt. 23, 3099 198
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image pixel, the imPRESS software is recommended 9. R.A. Athale. C. L. Giles. and .1. A. Blodgett. "Use o

directly. However, for most CGHs with moderate res- Written ('GH in Optical Pattern Recognition." Proc. S
out ,the more user friendly DISSIA software syn- tto-Opt, Instrunt. Eng. 437,48 ( 1981:.olution, thniqe wlurfie. 1 s1 R. Sandstrom and S. H. lee." Productim ofOptical Co

thesis technique ill suffice. T ransform Filter, b. a (omputer Controlled Scanning

The final topic of concern is the number of points otietric Pattern System" Proc.So(. Photo-Opt. Instr;
that one can record. The IP within the Imagen printer 137, 6i4 1198:1.
produces the necessary raster image from the imPRESS I I. ltagen Corp.. iat 'RESS (26 'rWrner. .antal 215(e

file. In conventional text writing, the imPRESS com- mas Expressway. P.O. Box 58101. Santa Clara. CA 950"

mands used do not involve lines that extend more than 12. W. H. Lee. "Sampled Fourier Trantorn Hologram G
a fraction of an inch. Thus the printer engine can (and hv Computer." Appl. Opt. 9. 6:19 197))).

does) start printing before an entire page raster file has 1:t. C. B. Burckhardt. "A Sitplificatit ot l.ee's Method t
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Error-correction coding in an associative processor

Suzanne Liebowitz and David Casasent

A technique for encoding binary outputs from optical fiters or matrix memories used in an assoc
processor for object recognition is discussed. Binary coded output vectors (rather than unit vectors) arE
and considerably improve storage capacity. The output codes or matrix memories are chosen from c,
theory to enable error correction and detection. The error classification rate for the coded sche
compared to the noncoded version for different amounts of noise in the input and output planes. Discu
of extensions to more classes, more errors, and multilevel coding are included.

I. Introduction formulation is based on a multifilter classific
We describe a technique for using conventional cod- technique. In Sec. II we review its formulation

ing theory to enhance the capability of optical correla- realization and note its improved storage capacit
tors for object recognition and orientation determina- In this paper we further enhance this metho
tion. Three types of advanced filter that have been designing the filters and the output codes to er
suggested for use in an optical correlator are projection error detection and correction. For our work, wi
filters,' correlation filters,2 and peak-to-sidelobe ratio binary coding theory since it allows for easier co
(PSR) filters." Section II reviews the synthesis of tions/encodings. Therefore, the outputs of the fi
these filters. Here, we emphasize the use of projection can only be set to 0 or 1 (or values representing 0 o
filters and especially their ability to encode multiple- for example, a0output should be avoided). Thee
class information. Several methods for implementing correcting technique used in our work is presento
associative memories have been detailed in the litera- Sec. III. Error-correcting codes are advantageo
ture.4 -

1
3 Some of these methods have been proposed situations where the probability of a bit transitior

for optical implementation., - ' ," In this work, we syn- a binary code, this is the probability that a t
thesize the associative memory from projection filters, incorrect) is small. In Sec. IV we discuss the i
A recent suggested method of optical associative model used in our work and the theoretical limital
memory synthesis used projection filters to form a of the coding techniques. In Sec. V we presenv
matrix with each filter as a column and optically com- results of simulations tested on both uncoded
puted the vector inner products required in parallel.'3  coded outputs with a data base consisting of le
The output vector from this memory is a code that from the alphabet. By limiting the scheme to a bi
describes the input vector. In our work, the input code, we lose the ability to handle more classes
vector is an object image-plane representation, and the fewer filters as is possible with multilevel coding
output code indicates the class of the object. We will Sec. VI we will discuss how multilevel coding ca
use the term class loosely, since each input image can used to enhance the capability of the system to he
either be a different object or a different orientation of more classes with fewer filters and other selecte(
one object (or a combination of both). Each bit in the vanced considerations.
output code corresponds to the output of one of several II. Filter Synthesis and Associative Memory Fornul
filters (matrix columns). This associative memory The conventinal heteroassociative memory fo

lation uses unit output vectors with the location
denoting the recollection vector or class assoc
with the input data. Various associative memory

The authors are with Carnegie-Mellon University. Department of thesis techniques and realization architectures
Electrical & (Computer Engineering, Pittsburgh. Pennsylvania been described. 4 '3  We consider an efficient, ]1521:. capacity multifilter associative memory. A si

Received 12 September 1986. conventional optical associative processor is shoi
t)0:6935/87/060999-0802(0/. Fig. 1. It has an input key vector x at Pl, whi
c 1987 Optical Society of America. multiplied by the associative memory matrix M
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to give an output recollection vector y M x at P,. In projection filters (with extensions to correlatior
our asociative memory synthesis, we use k = F filters other advanced filtersl following directly). Whe
hk as the columns of M. The P:3 output vector thus has key vectors are chosen properly (as statistically r,
F elements, each of which is the vector inner product of sentative of the data)," this associative processor
the x input and the various hk filters. For the case of F forms quite well and the output vector denote
= 2 filters (hi and h 2) at P.) with binary thresholded P3 reference Yk recollection vector most closely assoc
outputs, the four possible F = 2-bit output vectors are with the x test vector. The matrix can also be sy
noted in Table I. Each of these can be made to corre- sized to output a reference key vector xk most cl
spond to a different object class by the appropriate associated with a partial or noisy input key vector
output binary encoding. For the general case of F is an autoassociative memory matrix). In this p
filters (F columns in the matrix at P), the F-bit output we will consider only a heteroassociative memor
can accommodate 2 F classes of objects (it is often pref- trix, although an autoassociative memory matri3
erable to allow 2 F - 1 output classes to avoid the all- mulation as well as the cascade of an autoassoci
zero output vector, which can also occur with no P and a heteroassociative memory matrix is possiblh
input). The associative memory matrix M need only yields excellent results. Our main attention wi
be M X F, where M is the dimension of the input vector, given to providing error-correction ability tG this,
Conventional associative memories require far larger ciative processor in addition to the initial error-co
matrix sizes and would provide at most recognition of tion ability the system possesses as an associ
F rather than 2 F output classes (while also requiring F memory and/or nearest-neighbor processor. Suc
<< M for most conventional associative memory formu- ditional error correction is necessary when partih
lations). put vectors are present, when the dynamic range c

Synthesis of this matrix (and its associated filter optical processor implementing the memory is i
vectors or columns) has been well-documented 1' 1 3  when input or output noise is large. The basic e
and is thus only briefly highlighted here. We begin correction techniques advanced should be suitab]
with several images in each of several classes and form most associative processor synthesis algorithms
their vector inner product matrix V. We then invert V architectural realizations.
and multiply it by a matrix P whose rows are the
desired F-digit output yk recollection vector codes for III. Error-Correction Coding
each input key vector xk. The rows of the resultant The basic idea of coding theory is to represent a
matrix A = V-IP specify each filter function hk as a output by n > k bits in order to allow for error cc
linear combination of all the original key vectors. The tion. A simple example of a binary coding techr
F filters hk are then used as the columns of the matrix which adds redundant bits is the parity bit schen
M at P2 of Fig. I and the F-digit y output at P:1 will be which one extra bit is added to a k-bit representE
the binary code for the 2F different object classes de- The extra bit indicates if the number of ones i
sired and specified by the P matrix. The more general code is odd or even. This technique helps dete,
version of this associative memory synthesis algorithm rors but cannot correct them. For our present apl
uses F filters with L different levels allowed in each of tions, it is desirable to use a coding scheme tha
the different F output P3 digits. This allows us to allow for correction. The choice of coding schen
represent LF object classes with an associative memory use for this problem is exhaustive. Many (k +

with only F column vectors. We will restrict attention codes exist that can allow recognition of 2 y object,

here to the case of binary output vectors (because the cos exit t o ca a n conitn o A vc

error-correcting techniques we will be describing will various abilities to detect and correct errors. A vi
erorchriplerng techiuese). wI this p ri we of decoding schemes also exist. The group of cod
be much simpler for thi case). In this paper, we chose to investigate is the linear block codes.
consider techniques to improve the performance of have the ability to correct errors. The more bit i
such associative processors by using coding theory to that a code is able to correct, the more redundar
allow the detection and correction of digit errors in the one needs in the representation. Linear block c(
output y vector. We will also restrict attention to are described in terms of generator matrices G, p

check matrices H', and a syndrome vector s. Ar

Table 1. Two-Filter output linear code uses n bits to represent a k-bit code
T our binary case) 2

" different objects where n > h
('lass h h, To demonstrate the concept, we specifically ch

1 0 0 use a (7,4) Hamming code. A Hamming code is
2 1 I able because it involves a matrix-vector multipli,
:1 1 1 for decoding (and this operation can be implem
I 1I digitally or optically using a nonlinearity su
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Table II. Decoding Table (or the (n,k) = (7,4) Hamming Code X M

Syndrome Coset Leader
s Bit in error e

000 0 0000000
100 1 1000000
010 2 0100000
oo01 3 oo010oooo
110 4 0001000 P1 P2 P3
011 0 0000100
111 6 0000010 Fig. 2. General block diagram of an error-correcting associa

101 7 0000001 processor.

thresholding). A (7,4) Hamming code uses 7 bits to
encode 4-bit data. It cmn thus accommodate 24 = 16
different inputs or classes, and the code has 7 - 4 = 3 with an associative memory to determine the s,
redundant bits. This particular code can detect and drome-coset leader association. Since each syndro
correct 1-bit error in the output. We now provide a vector s, corresponds to a coset leader ei, we will p
brief review of conventional Hamming code theory.14  duce an si for each input ei by a matrix-vector multil
The n-bit code is derived by multiplying each possible cation by a matrix Y that satisfies siY = ei for all (si
k-bit message by a k x n matrix G known as the pairs. If we place each si in the ith row of a matri:
generator matrix. The (7,4) Hamming code is derived and each e, in the ith row of a matrix E, then 1'
by multiplying each 4-bit message u (i.e., 0000, 0001, specified by
... or 1111) by sY = E.

=[ 1 0 1 0 0 0]0 Equation (3) can be solved in several ways 4: in a lea

I I 1 0 0 1 0 (1) squares sense as Y = (STS)-lE, or iteratively, or fri

1 0 1 o 0 0 the outer-product approximation (assuming orthol
nal vectors si such that S - 1 = S7)

In coding theory, vectors are row vectors (u T is a -

column vector), a matrix-vector multiplication is writ-
ten as u G, and all multiplications are modulo 2. We
will retain this notation and usage. For the message u Figure 2 shows the general block diagram of
= [1101], the n-bit code word would be u G = proposed error-correcting associative processor. 'I
[00011011. For example, the first element of u G is n = 7-bit Hamming-coded received vector r is outl

from the first associative processor (Fig. 1 with the
[I 0 11 [1 0 11 1T=(1+0+0+ 1.= 2,=0. (2) matrix synthesized using projection filters). It is t1,

The G matrix can be written as an augmented matrix G decoded by multiplication with the parity-check n
= [P1I], where I is a k X k identity matrix (here k = 4) trix HT. The n - k = 3-bit syndrome vector s p:
and P is a k X (n - k) = 4 X 3 matrix with 0 and 1 values duced is then converted to the coset leader vector e
chosen for the specific code. the second associative processor shown (which has I

To decode a received message r (of n bits) to produce same form as Fig. 1 with a different P.2 matrix). T
the original k-bit message, we multiply r by a parity- presence of a bit error and which bit (if any) is in erl
check matrix HT, where H = [I,_A, P71. In our exam- is determined by e. The final box then produces I
ple, I is n - k = 7-4 or is 9r 3 r',H is 9X r-bit u code. The vecLor operations p
7, and Hr is 7 X 3. The product r H T yields a syn- formed are modulo-2 (no carries) and, thus, the sel
drome vector of dimension n - k = 3 for our example. rate operations cannot be combined conventions
Note that this r HT multiplication is also modulo 2. into one matrix-vector processor. However, they (
The syndrome vector tells us if an error has occurred in be combined into one table lookup associative proc
transmission and which bit is in error. If s = 0 (the sor (Fig. 2). However, the use of additional nonline
zero vector), no error has occurred. A nonzero vector s ity appears to be beneficial in such processors, and
indicates the presence of an error as well as which of employ the system in the form shown in Fig. 2.
the n bits in the received message is in error. Table II emphasize the nonlinear nature of the various ope
shows the eight possible 3-bit syndrome vectors for our tions, we includ& nonlinear (NL) units in Fig. 1. Th
(n,k) = (7,4) code example, the associated bit that is in nonlinear units also include thresholding operation!
error, and an n = 7-bit unit vector e called a coset reduce noise effects and to improve performance.
leader. The location of the 1 in e indicates which bit in Let us now discuss how s and e provide error corr
the received message is in error. The corrected re- tion. Three situations can occur for the s output
ceived code is obtained by adding e to r modulo 2 (with any Hamming code. We discuss these for our cast
no carries). This correction operation can be per- an (n,k)= (7,4) code:
formed by a bit-by-bit exclusive-OR of e with r. (1) The received vector is one of the sixteen alloi

The relationship between e and s is usually imple- ble n = 7-bit codes uG for the k = 4-bit words u.
mented in a lookup table. We propose to achieve this this case, s and e will be zero. The received code w,
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r will be correct and the final n-bit word u will be of the filter to produce c' n + c. This is tl
correct. thresholded at +0.5 and the pixels or elements of

(2) The received vector r has a 1-bit error. In this received signal become 0 if c' < 0.5 and 1 otherw
case, s will be one of the 2 n-k - 1 = 7 nonzero syndrome This is the output r of our noisy system. The variai
vectors and e will denote which bit is in error (see Table a2 of the additive noise is related to p as we now det
II). In this case, e and r can always correct the error to From (8), we require p < 0.2 to satisfy our approxir
yield the correct u. tions in (6) and (7). We assume that the probabi]

(3) The received vector r has more than 1-bit error. that any bit is a l (or a 0) is 0.5. Therefore, if anoutl
In this case, the vector will be (incorrectly) corrected to element of the noiseless system is 1, it will become 0
one of the sixteen Hamming code words. This is be- < -0.5; similarly, if an output element of the noisel
cause the Hamming code is designed such that each of system is 0, it will become 1 if n > 0.5. For Gauss
the sixteen 7-bit received codes has seven 7-bit re- noise, the probability of a bit transition error is tht
ceived code words that have 1 bit in error. The seven .o
codes which are 1-bit different are unique to each of p = 0.5(1/2,,)' exp(-x 2,2dx

the sixteen code words. Therefore, the 16 X 7 = 112
seven-bit codes will always be corrected to one of the 2 expi-x>:>rdx.

sixteen error-free Hamming code words. Including + I.5 1/2r) -

the original sixteen Hamming code words, 112 + 16 =
128 (all 27) possibilities for 7-bit outputs are accounted We denote the Gaussian distribution as
for. (;x 12' exp(-t 2 )dat.

Further details on Hamming codes and other linear 1/21)' e /
bWock codes are provided in many texts. 4 -

17 Other
coding schemes can allow the presence of more than 1- and note that G(-x) = 1 - G(x). Using this symmet

bit error to be detected and, therefore, provide a no property, Eq. (9) becomes

decision output state possibility. p = I - G(o 5ial.

For this to be <0.2, we require G(O.5/a) > 0.8 or
IV. Output Probability of Error and Noise Model a < 0.6 or (T2 < 0.36.

Coding techniques perform well if the probability p
of a bit error is small. In this section we derive the Therefore, we expect that when the input noise ha
amount of noise that the coding scheme can tolerate variance a2 < 0.36, we will obtain better results w
and still be effective. In our specific Hamming code error-correcting coding methods. In Sec. V we sh
example, the probability of error p for any bit in the the results obtained for several values of 0

2.
noncoded 4-bit representation is

PW) I I . (4) V. Simulation Results
The training set or key vector for our projecti

The probability of error for 7-bit Hamming code is the filters consisted of 16 images of letters (capitals A-
probability that two or more bit errors occur or and small letters a-h) from the New York Times fo

P(e) = 1 - (1 -p) - 7l - p),;. (5) These 64 X 64 pixel images are shown in Fig. 3. T
letter occupies --20 X 20 pixels of the entire ima

which is 1 minus the probability that none or 1-bit We calculated F = 4 filters digitally off-line using t
errors occur. If p is small, then we can use the series algorithm in Sec. II, with each filter being of dimensi
expansion (1 - x)n to approximate (4) and (5) by 642 and a linear combination of all 2k = 2 F = 24 = 16k

P,(e) = 1 - (1 - 4p) = 4p, (6) vector test characters. These four filters were used
the columns of the 642 X 4 matrix at P2 of Fig. 1. T

Pe) = 1 - (1 - 7p + 21p) - 7p(1 - 6p) = 21p 2. four vector inner product outputs at P:.1 of Fig. 4 repi
(7) sent the n = 4-bit coded vector u (before error-corro

tion encoding) that denotes the object class (the inp
The approximation used in (6) and (7) holds if PI(e) > letter and if it is a capital or lowercase letter). T
P-(e), i.e., if sixteen coded vectors u and the letters to which th

<4/21 orp <0.2. (8) correspond are noted in Table III. These also repi
sent the actual P:1 output obtained from Fig. 1

Therefore, for small p, Eq. (6) is greater than Eq. (7) simulation) for" the case of F = 4 filters and L =
and we expect an advantage in using the coding meth- output levels.
ods to correct errors. If p is large (i.e., if the noise is We then synthesized a second associative process
large), coding may not be beneficial. matrix with error correcting using the (n,k) = (7

We now derive a first-order estimate of the amount Hamming code. The associative matrix now consist
of noise our system can tolerate and still provide error- of n = 7 filters of 642 elements each as the colur
correction ability. We model the noise fed to the vectors inthe642 X 7 matrixatP 2 of Fig. 1. Eachoft
output of the system as a Gaussian zero-mean variable F = n = 7 filters was again a linear function of
n. The noise n is generated and added to the output c sixteen original key vectors and these filters were c;
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Fig. 3. 64 x 64 pcixel training
or ke ' keetor. Input images li
T'he Neuc *tork TIimes tont (e

Table 111. Nonerror-Correcting Output with Training Set (No Noise), F = Table IV. R~eference Key Vector Images and Associated Output C
4. L =2 Words from the (7,4) Hamming Coded Associative Processor with F

Lettr Cde wrd Leter ode ord= 2 and No Noise
Letter Code word Letter Code wor

.A 00100 a 11000
B 000 1 h 1)101 A 0000000 a 10 1000 1
C (101(i0 1010 1101000 h ol111011
D1 00 11 d 10)11C 0110100 110)0101
E 0100 1 1100 [2101111)1 d/ 000)1 W1)I

F OW]1 f 1101 E 1110010 c0100011
G 0110 1110 F 0011010 f 11t0101I
H 0"I] IIt 111 100)0110 Li 0010111

H 0101110 hc 1111111

culated by a straightforward extension of the method
outlined in Sec. 11. The n =7 -bit output associated

codewors (te cosenproecton vlue use inthe Table V. Performance of 4-Bit vs 7-bit Hamming Code Assocla
codewors (te cosenproecton vlue use inthe Processors for Various Levels of the Noise Variance 2 (the Total hI

algorithm) for the sixteen key vectors are given in of Images Is 16)
Table IV. There are also the noiseless P:l outputsNoerrcretnNtmr
obtained from Fig. 1. N ro orcinNmeIn TbleV w prsenta smmay o ou resltswhe ~2 4-lit code Hattncinz code Corrected ej

In abe Vwepreen a um aryofourreult wenPercent cc rrec:t )errettt cocrrect ill Hamrming
noise was added to the output vector from the associa- Noise )tccmlcercf errcrs) Iclnher citerrcr) prccess(
tive processor. We varied 0-2 in order to determine the 1.1i icio1oc1)

noise level for which the error- correcting coding 1)21) 50, c 8 81ic. (3) 9
scheme is advantageous, and to determine the im- 0 , 1.5 51 8) 621i (6)
provement it provided over a nonerror- correcting 0,40 ;t$810 I r56 t, 4
code. For each value of L72, Table V gives the percent of 0110 l:)80 0 )) 4 I' 9) 6

the sixteen key vector images correctly classified for 0.0 til (II I ll'1i (I]I

2 , o) F~Icig. -I. Nccjs .A ecith vare).
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the 4-bit and 7-bit error-correcting Hamming code Table VI. Output from a' = 0.2 Output Noise Tests

with the number of errors in parenthesis. Note that 4-Bit code (7.4) Hamming Corrected
any error in one of the 4-bit outputs will be an error and Letter output code outiput Hamming (ode
that outputs with two or more bit errors will be errors A 0]" 0000001* 000000
for the Hamming code associative processor. The last B 0001 01110)0*
column gives the number of errors (out of a maximum C 0010 01101** 0110100
of 16) corrected in the 7-bit error-correcting processor. 0 eeI I 1011001

From the results in Table V, the error-correcting E 110o* 1110010

coding provided better results for values of a2 < 0.5. ; 1011 10101 10" 1000110

However, the results are significantly better for a2 < H 0111 0101100"* 0101110
0.4 (classification is 81% for a2 = 0.2 and 100% for a = a 000)) 10101 1* 101000)1
0.15) and only 6% better than the 4-bit scheme for a2 = b 1001 1111001 ** 0111001

11 1000 1101101 * 11001010.5. Thus for large noise levels, the improvement ob- d 1001 00011l
tained by error-correcting encoding is less significant 100 0000011"* 0(100011
and not necessarily worth the added memory storage f 1100' 1001011
and calculations. Significantly better performance g 1110 0010011
occurs for lower noise levels in agreement with the h 1111 0111111"* 1111111

theory in Sec. IV. In Table VI we list the 4- and 7-bit Note: For the 4-bit code result the * indicates error for the 7-b
outputs obtained at P:, of Fig. 1 for the case of noise (7,4) Hammingcode result the * indicates uncorrectableerror the'

with a = 0.2. In the output from the 4-bit projection indicates c'jrrectable error.

filter associative processor, an * indicates an error. In
the output from the 7-bit Hamming code scheme, an *
indicates an uncorrectable error, i.e., 2 or more bits in Table Vii. Estimated Probability p of an Output Bit Transition Error for

error, and * * indicates a correctable error. Input Images with Various Noise a'

In the previous noise tests, the noise was added Noise Bit error
directly to the output recollection vector (since for this variance probability 4-Bit output Hamming code

case we could obtain a theoretical performance esti- p (number oferrors) number of errors I

mate). To determine the effect of noise in the input 0.4 (.02 891, (18) 9:' (11
image on the probability of an incorrect bit in the 0.5 0.04 81, (34) 95% 18)0.6 0.08 7% n 44) 91, ( 15 1
output plane, we require simulations. There is no 0.7 0.10 651 45) 851 20
method to directly calculate this relationship mathe- 0.8 o.1 6 ' (59) 80% (32)
matically since each image and noise representation t.o 0.1:1 54% (73) 69 (.50)
will behave differently. To estimate the amount of 1.3 0.18 43% (92) 63% (59)
input plane noise for which the error-correcting coded Notc: Each p estimate is based on ten runs. The percentageoft-
output will provide a higher classification rate than the total 160 images for each 2 value correctly classified for the 4-b
nonerror-correcting coded output, we varied the Hamming code schemes are listed (with the number or images mi:

amount of noise (measured by a2) added to the input classified given in parenthesis.

training images. We could then approximate the
probability p of an incorrect bit by the number of
incorrect bits in the output divided by the total num- the 160 images (16 characters X 10 runs) per a' yak
ber of bits. We use ten realizations of the noise for classified correctly and the number of errors are ir
each a2 value to obtain better statistics. Zero-mean cluded in parenthesis for the two coding schemes. F(
Gaussian noise (with a specified a2) is added to each the (7,4) Hamming code, the percentage correctly cla:
pixel in the image and the pixel is rethresholded at 0.5 sified includes those output codes which originally ha
to obtain the noisy binary input image. Figure 4 shows 1-bit error which were corrected by the postprocessin
sample versions of the letter A with varying degrees of In all cases, the error-correcting coding providE
noise. Notice that the additive zero-mean noise clut- considerably improved classification rates and perfo
ters the background as well as drops out data from the mance compared to the four-filter (or 4-bit) outpu
letter. As the input noise variance increases, the classificatk

We performed ten runs for each a2 value for all rate is lowered for both the error-correcting and no
sixteen original key image vectors for the 4-bit and 7- correcting associative processors. For a2 = 1.3, v
bit output coded associative processor. For each a2  estimate p at 0.18, which is close to the theoretical lim
value, there are sixteen images, with 4 and 7 output bits (of 0.2) estimated in Sec. IV. In this case, the classil
from the processor and ten runs. The total number of cation rate for the Hamming code processor is on
bits considered was (10 runs)*(4 + 7 bits)* (16 images) 63%; however, it is still a significant improvement ov
= 1760. From the number of bit errors out of the total the 43% classification rate for the four-filter outpt
of 1760, we estimate p for the different a2 values. The As a2 is increased further, we find the classificati(
results are shown in column 2 of Table VII. For input rate for both the error-correcting and nonerror-cu
noise variance of 0.4-1.0, the estimated value of p recting processors to be too small to be useful.
ranges from 0.02 to 0.13. Figure 4 shows how poor the seen, a considerable amount of input noise can 1
input SNR is even with a2 = 0.6. The percentage of tolerated and the error-correcting associative procE
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sor will still perform well. In Sec. VI we discuss alter- put can be classified as undecided, and, if desire
native more advanced codes which are able to correct input can be reprocessed until no uncorrectable
more bit errors. occur.

All of our previous examples used binary codiy
V1. Advanced Considerations preferable coding scheme would employ multile%

From the results presented in the previous section, it ters with multilevel output coding vectors. W
is evident that coding schemes can significantly im- levels and k bits, the output could handle LA difi
prove classification results in the presence of noise in objects instead of only 2k as with a binary code.
the input and output. Two more issues we will consid- would significantly enhance the ability of the syst
er here are (1) the handling of more classes and (2) the handle more information with fewer filters. On(
correction of more bit errors. We consider binary multilevel code is a nonbinary version of the
output vectors initially. In the nonerror-correcting F- code, the Reed-Solomon code.21

) The decoding f
filter case, we can increase the number of objects to be more complicated than for the BCH code, but it C
recognized by increasing F = k, the number of filters used.
and bits in the output code. In an F-filter scheme with We now consider methods to reduce the size,
F = 6, we can handle up to 26 different objects. This associative processor matrix (at P, of Fig. 1).
would be sufficient to classify the entire alphabet optical implementation, the number of filters and
(both lower case and uppercase) along with the ten dimensionality are restricted by the size of the s]
numeric characters 0-9. If we wanted to extend this to light modulator on which the matrix is recorded
an error-correcting linear block coding scheme, we Using a liquid crystal TV (with 127 X 143 pixels)
would need an (n,k) code with k at least equal to 6. If we could handle 127 filters, but each can only b
we also wish to implement a coding scheme that is able long. If the input key vectors are lexicographic i
to correct more than 1-bit error, we will need to synthe- plane vectors, the input image size is quite lii
size and store more filters (for the extra redundant ( -10 X 14 pixels). By representing the inpul
bits). Since a Hamming code can only correct 1-bit feature vector instead of the full image, we can si
error, we must use other available coding schemes. cantly reduce the dimensionality, achieve shift-i
Binary Boce, Chaudhuri, and Hocquenghem (BCH) ance and some degree of automatic distortion ii
codes are one viable alternative.' s .' 9 For example, ance. The features chosen are dependent on thE
there exists a (15,7) BCH code that could handle 128 of input data and the properties required of the si
classes and correct 2-bit errors, but fifteen projection (such as shift, rotation, or translation invari,

filters must be used. With thirty-one projection fil- Typical feature spaces are Hough transforms, F(
ters we could implement a (31,6) code that could han- transform coefficients, chord distributions, radiE
dle the alphabet and correct up to 7-bit errors. angular moments, and Fourier-Mellin coefficier

BCH codes require complicated decoding tech- 27

niques. We do not provide all the details, but rather The concepts presented here can also be extenc
will briefly outline the procedure in order to compare encoding the outputs of several correlation fi]
thedifficulty. With BCH codes, the syndromes is still Correlation filters are implemented and used
calculated by a matrix-vector multiplication such as differently from the projection filters. A full co
rHrI, but s is now a 1 X 2t vector (where t is the number tion of the filters with the input image is perfc
of bit errors we desire the code to correct). The ele- (not just an inner product). The output corre]
ments sk of s will now be the sum of powers of a planes are then searched for peak values above a,
parameter a, i.e., fied threshold. These specify the 1 or 0 elei

s, +,t + . (peak or no peak) in the output code. The restri(
on the number of bits in tne code (or the numl

S2= --" + + filters) depend on the number of correlations thi
be performed in parallel or rapidly in series (recal
a full correlation must be performed and the ,
correlation plane searched to obtain 1 bit of the o

S= , + , - + ,1:21 code). This is possibly optically.1'

The coset leader demodulated vector for this case has V Summary and Conclusions
as its elements jk (k = 1 to ). The values of the jk
indicate the locations of the errors in the original in- We have discussed how to use coding theory t

put. To decode these output BCH s codes is more rect output errors from an optical associative pi

difficult but can be realized by an iterative algorithm 4  sor. The associative processor we use employs p

that solves Eq. (13) for a, u, and then all jk. Since v < t, tion filters for more efficient encoding of inform

there are multiple solutions to the set of equations in Specifically we have demonstrated the ability to i

(13), and the solution that yields an error pattern with sent 24 (rather than just k) object classes with a

the smallest number of errors is the correct solution. output recollection vector and a k Xr m assoc

Furthermore, other codes exist which can correct a matrix, where m is the number of elements in the

number of errors (t) and can also detect if more than t key vector. The output code words are select

errors have occurred. With such a code, a vector out- enable correction of bittransition errors resultint
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either output or input noise. We tested the ability of 9. A. Yari% and S K. Ktng. "' .. ia i e Mern,,rie, Baed
the coding scheme to correct errors for various Nesage-Beariig Optical Mde in 'hase-(, ojugate Re-na

amounts of noise in the output and input, and we tIr..' ot. l.ett., 18 luning aF).
showed that for small bit transition error probabilities I at i H ofger, .. lunning. .o wechk and . arin. a(p ~ AO~ theil e Holographic Menmory with F'eedbhack t.ing l'ha'.e-(~r
(p < 0.2), the coding scheme improved results. The juIgate Mirrors,'" Opt. l.ett. II 18 1.9sbi.example chosen was a sixteen-class binary coding 11. M. Sakaguchi. N. Nishida, and T. Nemotr. "A New Ass,ciati%
problem using a (7,4) Hamming code with the ability to M.emorv System Utilizing Holograph.v" IEEE 1'rans. ('oipu'
correct a 1-bit error in the output. Extentions to C-19, 1174 (1980W.
larger class problems and to increased error-correcting 12. B. V. K. V. Kurnar and B. .. Montgomery. "Nearest Neighbc

capability were discussed. Non-Iterative Error-('orrecting Optical Associative Processor.
Proc. So'. P hoto-Opt. Inst.'urn. Eng. 638, 8:3 (19861.

1:3. 1). Casasent and S. Liebowitz, "Model-Based Knowledge-Base
Optical Processors." Appl. Opt. 26, in press (1987).

We acknowledge the support of this research by 14. S. ,in and 1).Costellh.lr..LErrjrt'ntrl('CdingFundamcntai
General Dynamics, the Defense Advanced Research and Applicatiln,. (Prentice-Hall. Englewood ('liffs. N.J. 19s:1
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Optical associative processor for general linear
transformations

Raghuram Krishnapuram and David Casasent
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1. Introduction the cUrve to whichi each input poilrap is

Linear transf'ormiations have been used extensively regardless oft hie posit ion Iiie Iinput. i iie>(

in the literature to produce f'eature spaces f'or pat tern ties are invaluiable. e"SpeiAdlk lo i)i alj
recognit ion. Transf'orms such as the Fourier trans- tloii i of thebe, rails, o~rnl-. A ,,i lI tC W

f'ornC Mellin t ransf'orm.- and I-101ough1 transform pro- aiC 10 i-i A li-w Liai_' iine Hii gh -i

vide f'eature spaces i'r pattern recognition. T'hese oe used ver., cltleot i\el.-l\ r paitern recogniti
ransf'ormed spaces generally make object detection straig-iut-iiine HoUtgi spakc nt > evcrdl ai-i\ ani

and identification easier by emphas;izing o~r bringing (all he ve asily con.t~ dlC.c ICCcl~. a

out certain f'eatures of the input image. These t rans- uoen~ijonaii I rvau t ion. i cii ai be tIjlai> in'
formis canl also he made invariant to certain types oft inpuOt 0I)jvot list ort o,Ci bc, lihe use of . t-;ta

diistoirt io n (if the object. They also achieve a certain t ransfo rindi Pills It Calcall."'ite Ustfl. 111 lit

airnut of dinmensionality reduction so that the num - t lll 10' cur\ ed oijecs . itgi ad iet hodt
be- of' samp~les required toi relpresent the input imiage the linear Li oii' irmatioli, requiredl+L ir Lil

for the purposes of* pat tern recognitin is smnall. In i So, anC ,110 j ipotaCiCi,)lla i. ;pi 1,'~c*~I

this paper, we consider thle Hough transormn for spe- ods, to achieve the straight -line iil [ xit anec

cific detailed realization, althbough the findamiental be more practical and teai-t life. Ii this p1

inapling. transformation, and associative proicessor adncanatra cmt10 ocmpeth

techniques are quite general. other linear t ranisformat ion., optically using
T[here are miany reasons f'or considering the Rough diative nmeniory architectuare. T[his approd&

t ransf'ormi (HT). It is; one Such feature space which t remefy eneral. It canl bc used to aciiievege
facilitates the detection of* a particular shape.1 It is HWV and, in general. anl\ iinear I ransf'ormiatio
very attractive b~ecause it canl be implemented optical- transf'orniationi is also s-hift-invariant, it cail I
Il' inl real timneand because it is a low-level feature space miented in .a very simlf~e and elegant mant
and is thus quite unique for p~arallel (iptical realization. acolistooptic cells tis we A-iil detail latei.
'1heiHT has been defined in avariety of ways.' ,j Itvwas proivide a low-level optical' ast'oCiaii\e pitc

originally formulated for the detect ion of straight lines lem nased oil thle assok a-Li nixeniiO rAI

in the input imiage. It has also been generalized for the ture. Thew systemn prodces thle Siraight -li
detect ion tfother analytical curves (eg., ellipses.' pa- feature space f'or recognition and location of
raholas 1 and even arbit rarY shapes .' arliltrar * shapes. 'Ibis is achieved ox thle ulse

All these transf'ormiations are linear, and a majorit \*transl orniat ions, as wve wvilt (lescrilbe.
if the HT oines are space-invariant- i.. tb- '.bapo (if Sect ion Ii de,,cribcs our new assciat ixe

aplprotach to) a general linear traimsfiirmatioi
algorithmn titontain tile reqoj~ireou itetitory miat
ton III discusses anl associatiye p~ro(essor i or

'Ili ;ti hr ;rc kil1i( .iiir M l , jiI ll c~i % ItpzrIIlril of several linear Hough space I ranst ormua i
C~ ~ ~~~~~~~~~~~~~~~i C-''l(I~CIIf:iii-rrt.toi~ll Ci- C -' tfeniiinl tu their ust - i obiet I ret Clgiit lollt

R. iNCCild -'C-Ihru~r, ').-'l shiff -in\'ariaiif priijert. i'C(Ill ti iV dxanct
CCI f:q5 C IIV CII new aciitstoiiiltic (At) architecitures for Ii

ho-i ,i C-CC''I.\CCC-C -realiza ion of I hie IiroliCs'hi as-15 lou\ty icim
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tion IV describes a proposed low-level optical associa- C. Associative Memory Output for a General Ir
tive processor system for object recognition. Section x
VI gives our summary and conclu.ions. The associative memory described above i

input vector x to an output vector y = I
reference (key) input vectors satisfy the pro

II. AM Realization of Linear Transformations '1) = ;,
Heteroassociative memories map each vector in the where x,(j) denotes thejth component of th(

input to a corresponding vector in the output, where ence vector x,, and
the input and output vectors need not be of the same
dimension. This fact can be used to achieve linear x'x' ,.

transformations on 1-D or 2-0 inputs, where each The output y corresponding to a reference in
point in the input is mapped to a corresponding point x, is
(or curve, a set of points) in the output.

y=Mx = #x =y *,.. y,

y NX + I .. +y ].\'

A-0,+, A. Vector Representation of Mappings

The mappings to be described apply to any data
representation (e.g., feature or symbolic space) but are where the last line follows from Eq. (5).
best described for an input image space. Let N be the output vectors for the N reference vectors q
total number of pixels in an input image. The 2-D the desired y,. We note that the maximum
input image can be lexicographically represented by a reference input-output pairs we are able 1

ame vector with N components, where each component equal to the dimensionality of the input vect
per- represents a pixel in the input image. The input vec- maximum is possible because the input v
Mi.- tor x, corresponding to a particular pixel in the input orthogonal. In general, the number of inp
W e image will have all zeros in it except in the ith position pairs that can be stored in an associative

where it will have a 1. (For the time being, we assume about an order of magnitude smaller than t
Fie that the input image is binary, but this assumption is sionality of the input vectors. '-

i not required, as we see later.) Similarly, the output For the case of a general input vector x cc
associated with each pixel is represented by a vector y, ing to the full lexicographic ordering of an
of size M, where M is the total number of pixels in the input image, more than one of its compone
output. Each output vector will have nonzero values nonzero, and the components can take al

.gfi only in those positions that correspond to the set of integer values. The output vector y corresl
ordi pixels or curve to which the input pixel maps. The size this input vector will be
an( of the output space can be compressed to a variable
th resolution, and thus M : N is possible and generally M = MX

TI t < N. =. yiI+ + \N.

Iwe
and Iwhich is a linear (weighted) combination of

s0 ence output vectors y,. This is exactly whal
ex- B. Construction of the Heteroassociative Memory for a linear transformation. Therefore,

ized Let X be a matrix with the N input vectors xi, transformation can be achieved through th(
the x. x\ as its columns and let Y be the matrix with associative memory approach. We now d

pie- the N corresponding output vectors yl, y. .. ,y.\ as its further.
sing columns. We consider the pseudoinverse associative
also memory' matrix M with the N input-output vector D. Memory Matrix for Linear Shift-Invariant
sys- pairs as the key and recollection vectors. In this case, Transformations

- YNIX. Equation (4) gives a way to construct tl
as a matrix M for an associative memory that ck

S of where any linear transformation. Let us assum
ear M =Vtransformation is shift-invariant as well as

~X. the case of 2-D images, this shift-invarian

ory and X' is the pseudoinverse of X given bv means that the shape of the curve to which
an X ,pixel maps does not change, and if the posi

x', , nonzero input pixel is translated by a certa

ion Without loss of generaitv,;, we cn rdor the input the positions of the nonzero output pixels ai
Vitt f %,etors so that X is an N X Nidenvi tvmat rix In hi- ed by the same amount. Since our input

case, X and X' are identity rnatri,,es mrid. therefore, vectors are simply the lexicographically o
sions of the 2-D image data, a 2-D transla

.ra i . image is equivalent to a I-D translation in
e( i.e.. M is simphy the matrix of'utnut vw..,,ir tors. This holds as long as the shifted point
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the input field of view and as long as the dimension of ciative processor formulations. We firs
ctor the vector equals the dimension of the full input image. generalized HT for circles because it is a

[This also holds when multiple objects are present in of a linear shift-invariant transformati(

?ach the 2-D input. We map input points to output curves, concentrate on the straight-line HT and

The and thus objects (viewed as a sum of points) map to the space transformations, since these are ow
sum of the output curves.] Potential problems can corn in thi, paper.
arise near the boundaries of the 2-D input image if the
whole output curve does not fit in the 2-D output size A. Generalized HT for Circles

fer- specified. This problem can be overcome by slightly We first consider the generalized HT
modifying the approach presented here. In the inter- circles of a given radius r. In this case, ea,
est of presenting the concept, we do not concern our- in the input image is mapped to a circle of
selves with this case. Since the input and output the location of the center of the circle b(

ctor translations are equal for the shift-invariant case, it tion of the input point. In other words, t
follows that the input and output vectors should be maps to the curve
equal in length or M = N for the shift-invariant case. + N

Thus, since our reference input matrix X consists of
column vectors x, which are just translated versions of in the (x',y') output plane. The accumulh
one another, for the shift-invariant case, the reference mappings for all input points yields a peal
output matrix Y also contains y, that are translated with coordinates that denote the center
versions of one another. Specifically, x, is obtained by If the input point (x,y) is translated

athe vertically shifting x,-I by one unit and y, is obtained amount, the output circle is translated
actly by vertically shifting y,-I by one unit. Therefore, we amount (see Fig. H. Therefore, in th4
)er of can write memory implementation of this transfo
re is columns of the matrix M are shifted vei
This N =L.',* another, and each column y, of'M discribe!sare N(I1-2- ;points on the circle of specified radius r.
Itput It follows from Eq. (9) that for the case of linear shift- shift-invariant transformation. To det(
)rv is invariant transformations, the matrix M is lower trian- other radii, a new M is necessary for each
men- gular and Toeplitz. line HTs allow for an easier search of circ

ent radii as we see in Sec. III.E. Generali
iond- E. Memory Matrix for Quasishift-lnvariant Transformations similarly defined for other curves, but stra
trary In this paper, our specific concern will be w;th the realizations (Secs. II.D and III.E) appear
an be straight-line HT for reasons explained in Sec. I. Al- able. especially when distortions or dif
ssible though most of the generalized HTs are shift-invari- parameters must be searched.
Ing to ant. this is not true of the straight-line HT. However,

it is shift-invariant for certain translations. We refer B. Slope-Intercept Straight-Line Hough Tran!
I to this property as quasishift invariance. In the case As another example, we consider the,

of quasishift-invariant transformations, the memory tercept(c) parametrization-, of the straip
matrix M = Y can be partitioned so that Y = In this case, each point (x,yN) in the inp

refer- [YI Y1... -Y\,, where the column vectors in each par- straight line in the (rn.c) space given by
eeded tition Y, satisfy Eq. (9). The corresponding input +
linear vector elements can be similarly partitioned so that x

posed = [x1, x . ._x . Thus, for the case of quasishift- This defines a straight line with slope
s this invariant transformations, Eq. (8) becomes intercept y in the HT output (r.c) space.

y = YX= Y X + + Yx. 10 mulation of these mappings for all points

It is possible that the y, terms satisfying Eq. (9) are not the input gives rise to a peak in the output

contiguous in the original (lexicographically ordered)

?mory memory matrix M. In such a case, the columns of M

rorm have to be reordered, and the elements of the input

at the vector also have to be reordered accordingly. This

r. In means that the input image will now have to be ordered

)perty (or scanned) differently to make the matrix X equal to \

input the identity matrix. We now illustrate these points

of the with examples of shift-invariant and quasishift-invari-

nount, ant Hough transforms in the following section.

inslat- III. Shift-invariant and Quasishift-Invariant Hough -- ,--....
)it pot Transformations
.d ver-
in the We now give examples of shift-invariant and quasi- 1'- I It ,t ti,. hitn i,,ii. ,t hie,,
e vec- shift-invariant Hough transformations and their asso- , - i , it, . ipit , . ,i,
ains in
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cuss the parameters of the input line. If the input point is circle centered at the origin, the output

example translated to another location (x',y'). the straight line translation of the sinusoid given by Eq.

We then to which it maps is in general not a simple translation occurs because the sinusoid's amplitude (X2

e Hough of the straight line in Eq. (12), since both the slope and the new point remains the same, and onl

-ific con- intercept can change. Thus the mapping is not shift- shifts, as shown in Fig. 2. With this insight,
invariant. If, however, we translate the input point if the input image is scanned in a polar f'
along the y axis only, the slope of the new straight line normal HT can be made to be a quasishif
remains the same, only the intercept changes, and the mapping that is shift-invariant for shifts

etecting mapping is a simple translation (in the intercept c by To avoid scanning the image in a polar I

,int (x,v) an amount y - y') of the old line given in Eq. (12). We could perform a simple rectangular-to-polai

us r with use this to produce a quasishift-invariant transforma- dinate transformation of the input image

'he loca- tion. We scan the image vertically and note that all conventional raster scan. The polar tran

int (x,y) the y, terms corresponding to pixels along any vertical verts the circular translation required for
line in the input are shifted versions of one another and invariance into a linear translation in 0. T-
thus fall into one partition in Eq. (10). Different data are shift-invariant in o but not in r. ']
partitions are required for each column of the input, input image is converted to a polar (r,o) r

of these Thus, the number of partitions is equal to the number tion, a normal HT of this polar data will be

IT space of columns in this case. However, when the input is invariant and will have partitions of M wil

te circle, scanned along vertical lines, the y, terms that satisfy that are shifted versions of one another. T

certain Eq. (9) are contiguous, and the mapping is easily since the transformed input points along ar

he same achieved and used in a quasishift-invariant processor. allel to the 4, axis (i.e., points in the origin,

ociative In all our transformation cases, the partitioning of X any circle centered at the origin) will have

ion, the and Y is such that the number of partitions No, in Eq. outputs in the Hough space that are tran:

s of one (10) equals either the number of rows or the number of sions of one another. Each partition corres

nonzero columns in the image. This may not be the case for row in the (r,o) representation. Unfortu

is thus a other transformations. though the retangular-to-polar transforma

ircles (f ear, it is not shift-invariant. Thus the

traight- C. Normal Parametrization of Straight-Line HT memory shift-invariant mapping techniqu

f differ- The effect of input shifts on the y, vectors in the cuss cannot be used to implement the polar

HTs are normal parametrization of the HT is considered next. One could implement it by computer-genei

line HT In this case, each point (x,v) in the input maps to a gram methods or by a camera with a spe(

, prefer- sinusoid in a (O,p) Hough space given by Therefore, although we can theoretically irr

It curve polar coordinate transform and a normal st
p) = x ,, + N il HT using an AM architecture, we cannot u

= 1- 2(,, 1- - 11 I(> V)]. 1:0 ple and elegant architecture presented in t
IThe normal straight-line HT is nevertheles:

(m)-in- Equation (13) describes all straight lines that could ful for distortion-invariant pattern recogni

ne HT. pass through point (x.) in terms of their normal dis- plained in the next section and can be easilx

ips to a tance p from the origin and the angle 0 this normal usingother methods.' " Tne preferable svs
makes with the positive x axis. The accumulation of HT for distortion invariance would thus
these mappings for all the points on a straight line in techniques to produce the HT and would u
the input produces a peak in the output HT space at approach to do the other transformations in

md the the (O,p) parameters of the line. In general, if the space that are required for distortion-invari

e accu- input point is translated to a new position, both the location.
line in amplitude and phase of the sinusoid to which it maps

le (mi) change. Hence the output mapping is not a simple
translation. However, if the input point is translated D. Hough Space Transformations for Distortior
so that the new point and o ;ginal point lie on the same We now discuss some of the transformati

straight-line Hough space that can be used
distortion (scale, rotation, and translatio
ant.'- We consider the normal straight-linE
the transformations here are easily desci
made. The normal straight-line HT, as de!

6 'Eq. (13), is not invariant to scale, rotation, ar
tion changes of the input object. However.
tIle to perform transformations in the Houg
that the effects due to these distortions are el

Similar transformations to those discussei
be derived for the slope-intercept straight

II I hti . Iximphi I i ,lu1,. shit initrilit, ,i I traichIl ll. but these are much more complicated and
1IT: 1;1) l;lpl!. h,- 4rl 1-l h .Ifl. implemented in a simple way. Generalizec
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also be made distortion invariant but only for one type tures as detailed in Sec. IV can perform thes

imple of object or curve. These restrictions do not apply to mations very efficiently and fast. (We

This the normal straight-line HT, as we describe in what changes in scale as changes in the curve r

0 for follows, and search them by varying the curve de
phas :Let the input object consist of a set of line segments One measure of how well two HT patterns m
phase and let (O,p) be a point in the Hough space correspond- point-by-point product of the two HTs. Thte that
n, the ing to a line segment in the input object centered at the is also the correlation value of the two HT I

origin. If the input object is scaled by a scaling factor the origin. Thus the matching can be d,
ariant s, it can be shown' that the line segment would map to optical correlation architecture. For the c

arcs. a new point (0',p') given by 1-D shift search of the HT of the input mum, we pared vs several reference HT patterns, a r
I coor- 1,=p and i =n. (14) nel AO architecture is possible. Suchal-D
hen a Equation (14) defines a transformation that maps a case, as we have shown. If the correlation

icon- point (0,p) in the Hough space to a point (',p') = (O,sp) such comparisons exceeds a predetermined
sishift in the transformed space. Equation (14) notes that the object is identified. However, comparirv (r,b) the transformation is the same (and hence shift-invari- terns for all possible distortions and class
if the ant) for each 0, but it is different (and hence not shift- object is not a trivial task (even with the

senta- invariant) for each p. In other words, the transforma- parellelism of optics). Fortunately, this pr
ishift- tion is shift-invariant for translations along the 0 axis. be overcome by treating the input object as
lumns However, it is not shift-invariant for translations along arbitrary shape and using the procedure dE
Milows the p axis. Therefore, this transformation is quasi- the next section.
e par- shift-invariant.
ice on Similarly, if (0,p) is a point in the Hough space E. Transformations for Detecting Curved Obje
ioidal corresponding to a line segment in the input object The normal straight-line HT space can ald ver- centered at the origin and if the input object is rotated for curve detection. In this case, we first,
Is to a by an angle 0, it can be shown' -2 that the line segment description of the curve in terms of the norrr
ly, al- would now map to a different point (0',p') in Hough eters p and 0. Let this description be
is lin- space given by /' = ,
iative ,. =i the parameters ote
e dis- = where a .a are the parameters of the cu
;form. Equation (15) represents a transformation that can be description is a set of peaks in a 2-D norma
holo- performed in Hough space to search for different input line HT of the input curve after thresholding

can. If; object rotations. It represents a shift in the Hough the points below a threshold to zero and ki
ient a space along the 0 axis. Since the shift is independent grey-level values of points above the thresl
it-line of the position of the point, it is a shift-invariant trans- detect a curve and its parameters in an input
D sim- formation. first form the normal straight-line HT of
)aper. Finally, it can also be shown' that if the input object pattern and threshold it. We then perforr
y use- is translated by (x,), the point (0,p) will now map to shift-invariant linear transformation of tf
as ex- the point (',p') given by space given by
Juced pni
for an 1, -t o" I ff 0, and 0 1= + + It u (tt-s 0 - < 0. 1), I - I,...,,'

other =) + t c- W - and H it -t , ' -I co 0 and then an inverse Hough transform."' Th
e AM I 1 a, .... -and a,, used in Eq. (19) are the par,
fough where the curve being searched for and p its rotat)bject The presence of a peak in the inverse HT sp,=, i+ ' = =tai I,. , fies the object. The parameters used in th(

Equation (16) represents a shift along the p axis. The mation in Eq. (19) (that yield a peak in t
riance shift is not uniform for all points, but it is the same for Hough space) identify the parameters of ti
n the all points that have the same 6 value. Thus it is a curve. Scale changes are viewed as chani
n t quasi-shift-invariant transformation. values of the curve's parameters Y,,. The I
ake it The above transformations for rotation and shift the peak in the inverse HT space defines t
wain- both require the Hough space to be scanned in the center,' i.e., its shift (x,,vo). Thus this

and direction of the p axis and are shift invariant in p. allows us to' identify a curve's shape, its p,
ed by Thus they can be combined into one quasi-shift-in- and its shift and rotation. Use of this techni
msla- variant transformation. By performing these trans- detection of missile trajectories has been

)ossi- formations for various values of the distortion parame- elsewhere.'--

ice so ters and c,)mparing (matching) the resultant trans-ace formed HT patterns with the HT patterns of various F. Inverse Hough Transforme nreference objects, we can identify the object in the face As a final example of a quasi-shift-invari
e can of in-plane distortions and also determine its distor- formation, we consider the inverse HT nol

T. tion parameters. The associative memory architec- For a normal straght-line HT, the inverse
ot be
s can
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from
.hold,
I pat- each point (d,p) in the Hough space to a straight line in sor architecture suggested in this section to ge
g the the (x,y) space (see Fig. 3). It is obvious that if the the HT.
1 and input pixel at (O,p) is translated along the p axis, the We see from Eq. (8) that the output of an,
n can straight line to which it maps is merely translated in linear transformation is given by the sum of the
rve of the direction of its perpendicular, and its slope does ence output vectors weighted (multiplied) by t
led in not change (see Fig. 3). Thus this transformation is responding elements of the input vector. If the

shift-invariant in the direction of the p axis. If this ence output vectors y, are shifted versions
transformation is implemented using an associative another, we can acheive this linear transformat
memory, it will be quasishift-invariant if we scan the the simple optical matrix-vector processor sh(

used input HT along the p axis, and the y, terms that are Fig. 4. This architecture consists of a point mod
n the shifted versions of one another will be contiguous. at plane P1. the output of which is expanded to i
iram- Section IV describes how the shift-invariant and nate uniformly an AO cell at plane P.'. ThE

quasi-shift-invariant transformations can be achieved ieaving the AO cell is then imaged onto a 1-D de
S,pt.allv using acoustooptic cells. We use the HT array at plane P which integrates in time. 1

I transformat ions described in this section for specific assume that the AO cell can be divided into M
This case studies. Section V advances an associative pro- lengthwise, where M is the number of elements

iight- cessor system that is capable of curved object identifi- The vector y, is first fed to the AO cell, and ti
tting cation and location. The system uses the straight-line ments of the input vector x are fed to a point mi

ig the HT and the Hough space transformations described in tor at P1 . Asy propagates downward in the AO
To this section. automatically creates y., y.:. etc. as these are s

,e, we versions ofyI. Thus, by pulsing Pi with the ele
input IV. Optical Realization of the Associative Processor of x at intervals of T,/M (where Tt is the apertur
luasi- In this section, we show how a low-level processor length of the AO cell) and time-integrating c
lough based on (quasi)shift-invariant linear transformations detectors at P over N intervals each T/fM. we a(

can bc optically realized using acoustooptic (AO) cells. the weighted sum of the y, as required by Eq. (8).
It is a low-level processor, in the sense that it operates the case of linear shift-invariant transformation:
on raw image data extracting local low-level iconic M. as noted in Sec. II, D.) Since we have to loadi

ues of image features (e.g., lines, edges, and their slopes) and the AO cell before we can start the computatior
ers of preserves most of the input data information. We first total time T required to obtain the output is
value. describe an aichitecture that can perform general lin- 1 7 + A I
lenti- ear shift-invariant transformations. We then de-
isfor- scribe a different architecture, which is capable of In practice, the AO cell cannot be divided into Al
verse performing general quasishift-invariant transforia- IM is the time-bandwidth product (TBWP) of tl
ecific lions. We would like to restate that these architec- cell], because .l is rather large for most cases.
n the tures are capable of realizing any general linear shift- example. consider the case of a generalized H
ion of invariant and quasishift-invariant transformations, circles for a 128 X 128 image. We have N =
irve's hut we focus our attention on the normal straight-line 16,000. If the AO cell can only accommodate a T
edure HT, because it can be used to recognize objects of of in (where oi '< M). we operate the processo
eters, arbitrary shapes, and it can be made distortion-invari- obtain n if the M output elements at the end of
in the ant. As noted in the previous section, the transforma- mi s. We then shift Out the contents of the deti
ussed tions required to achieve this are quasishift-invariant and repeat the process M/m times to obtain the

and can be easily achieved using the architecture sug- output. From Eq. (20), the total time T, tak
gested in this section. However, we recommend ob- produce the output on an ni element processor i!
taining the normal straight-line HT using the rotating 1 0 of + A I.

Lrans- prism method'' because we need to sample in input in
bove, a polar fashion if we want to use the associative proces- For N = M= 128 X 128. ni = 500. and ' = 5 s. w

maps
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F'ig. 7. Optical realization 4l q asishift-in ariant transformatlions.

T 5 ms in Eq. (21), and the point modulator at P, has required to complete the transformation is gi
to be pulsed with the elements of x at a rate m/T 4 

=
'. N. = TM/n oI + rt'nitiT,

100 MHz. This is a very realistic data rate for the
te point modulator and AO cell. If the number of y, terms in each partition is I

The above architecture realizes a shift-invariant lin- n = N/N,. As an example, we consider u
ear transformation. However, if we are using the nor- processor to compute the inverse HT. We

r- mal straight-line HT for object recognition, many of the case when N =72 x 25 (the size of the HTs
the transformations that we need to perform in the = 128 X 128 (the sizeof the image or inverse H'

r- Hough space are quasi-shift-invariant. We now con- %7, = 72 (number of partitions, one for each, v
sider theuseof multichannelAOcellstoachievequasi- 36 (number of channels in the AO cell),
shift-invariant transformations. The architecture we (TBWP of each AO cell), and T. = 5 us. For

n consider is shown in Fig. 5. Similar architectures have Eq. (22) gives T._ - 330 ps. Therefore, the I
been suggested for high-accuracy vector inner product architecture is quite fast and realistic.

i- processors.!' The input plane P1 consists of a row of
N, point modulators where N, is the number of chan- V. Proposed Low-Level Optical Associative Pr(
nels in the AO cell. The multichannel AO cell is Figure 6 shows the block diagram of the I

is placed at P_,. Each channel consists of m regions low-level optical associative processor. The
ts (TBWP = m) as in the previous architecture. The line HT of the input image is first computed.

light from each point modulator is expanded to illumi- be achieved in a variety of ways, including
nate a corresponding AO cell channel, and the light method presented in this paper. It is, howeve
leaving the different channels is summed and imaged able to use the rotating prism method." ' (TI

it onto a 1-D detector array as shown. Let the number of to be the most practical technique. since the A
partitions in the memory matrix Y be N, as discussed od requires that we scan the input image ir
in Sec. II. E, where the y, terms in each partition are fashion or perform a rectangular-polar trat

e shifted versions of one another. Let us assume that we tion.) The HT obtained is operated on by an
e have an AO cell with N, = N,. We feed one y, (the first tive processor (performing quasishift-invaria
e y,) of each partition to one of the N, different AO formations) to determine the curve parame

channels. Each AO channel is assumed to have the rotation value for the curve. The opera
TBWP of rn. The input vector x is also partitioned quired on the HT are linear and (quasi)shift-ii
(and rearranged in some cases) so that x = as explained in Sec. III. Hence the architec

e lx'l,x'.... 1'xI as detailed in Sec. II.E. These x, gested in Fig. 5 can be used to perform the,
terms are time-sequentially fed to the corresponding tions. The same architecture is then used to
N, point modulators. The system in Fig. 5 can be the inverse HT to provide the translation pa
thought of as an N, channel version of the one in Fig. 4, of the object. Thus this processor can be reali
with the N, outputs summed into a common detector one HT unit and two AO cell AM units of
array. The different y, terms in different channels shown in Fig. 5.
produce the different terms in Eq. (10), as they propa- Some advantages of using this technique a

r gate through the different channels. Thus the whole below. We use the normal straight-line HT
matrix-vector product is achieved at the end of (T 4 / objects of all shapes and thus avoid the use of
,rnn s, where n is the maximum number of y, terms in generalized'transforms for objects ofdifferen
any partition (i.e., the maximum number of shifted The transformed spaces are always 2-D, whi(
versions of the y needed in any partition). As in Eq. simpler and more efficient use of memory. T
(21). we repeat this (M/rn) times for M element out- od also works for multiple objects and partia
puts greater than the TBWP = rn of the AO cell. The Other associative memory techniques first u
number of partitionscan be greater than the numberof toassociative memory to map partial object
channels. In this case, we repeat the above procedure objects and then a heteroassociative memory
N. IN, times to achieve the complete matrix-vector object identification. Since our method work
product in Eq. (11)). Therefore, the total time 7' tial objects, we do not need the autoassociat iv
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Associative Memory Synthesis, Performance, Storage Capacity
and Updating: New Heteroassociative Memory Results
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ABSTRACT

The storage capacity, noise performance, and synthesis of asociat i', e menories for image analysis
are considered Associative memory, synthesis is shown to be very similar to that of near

discriminarit functions used in pattern recognition These lead to rieA associati\e memories and neA
associatie memory synthesis and recollection vector encodings Iletcroas.-:,ciatie memories are
emphasize in this paper, rather than autoassociative memories. since heteroa-..Doiative memories
provide scene analysis decisions, rather than merely enhanced output images The analysis of
heteroas-so-i. at:ie memories has been given little attention }leteroassociative memory performance
and storac' capacity are shown to be quite different from those cf autoassociati\e memories. with
much more dependence on the recollection vectors used and less dependence on M N This allo'As
several different and preferable synthesis techniques to be considered for assoclative memories These
new associative memory synthesis techniques and new techniques to update associative memories are
included We also introduce a new SNR performance measure that is preferable to conventional noise
standard deviation ratios

1. INTRODUCTION

Much has been written about associative memory storage capacity and the recollection and error
correction properties of such rremories Sention 2 reviews associative memory synthesis, several of the
neural and other associative memory models suggested, and advances initial remarks on the storage
capacity of associative memories The similarity of associative memory matrix rows to pattern
recognition linear discriminant functions (LDFs) is included. The assumptions on the key vectors in
the different associative memories are also noted, since this is not generally given proper attention
As we shall see, most work has considered autoassociative memories (.kAMs) In Section 3. we derive
expressions to show that heteroassociative memory (HAM) performance and storage capacity are quite
different from those of AAMNs We also advance new and preferable' performance measures to be
employed in comparing such memories Quantitative supporting data on H.AMI and A.\-M
comparative noise performance and storage capacity are then advanced in Section 4 \'e conclude
(Section 5) with initial remarks on different associative memory synthesis techniques to provide
updating and altering of associative memories. Our work and attention to H.LMs is especially
important in image analysis, image understanding and pattern recognition, rather than image
reconstruction and image enhancement as is generally' the AAM case considered



2. SYNTHESIS AND STORAGE

2.1 TERMINOLOGY AND PSEUDOINVERSE AS!2OCIATIVE MEMORES

In our notation, the input key vectors X k are of dimension N, the output recollection vectors vk

are of dimension K, there are M key/recollection vector pairs and the associative memory matrix \. is

K X N. An associative memory is intended to output a recollection vector v k that is closest to or

most closely associated with a given inpvt key vector xk , i.e. we desire M x,- 4 for all k - 1 to

M. If we form the key vector matrix X of size N x N1 (with the xk as its columns) and the

recollection vector matrix Y of size K X M (with the vk vectors as its columns), the associative

memory must satisfy N1 X = Y If X is square and non-singular, the solution to this can be written

Ni : -  (1)

Generally X is not square and this solution is not of practical use The typical solution used is

\i = Y X 4 , (2)

where the pseudoinverse of X is

- (XTX).IXT (3)

and where the vector inner product (VIP) matrix is

V\' xTx. (4)

The data matrix is denoted as XT (it has the xk key vectors as its roA vectors). We note that when

the xk vectors are orthonormal, then VW1 = I and X + 
--- xT The solution in Eq.(2), with X- given

by Eq.(3), is useful since xTx is a square matrix and hence it has an inverse (if the xk are linearly

independent, in which case V is of full rank). Thus, this solution in Eq.(3) is only possible when the

xk are linearly independent. In other cases, X + must be calculated using singular value decomposition

and other advanced techniques, which first produce a set of orthogonal vectors, or which form
separate linear discriminant functions (each of which is a row of the associative memory matrix) The

pseudoinverse solution is an exact solution if the xk are linearly iidependent (and in this case the

simple X+ solution noted in Eq.(3) can be used). This pseudoinverse solution in Eq.(2) is the

minimum mean square error (MSE) solution that minimizes IiY-M Jl. In cases when Eq (3) can be

used, 1IY-NMYII 2 
- 0. If the xk are orthonormal, then X = XT and calculation of the memory

matrix N1 is trivial. When M < N, there are more unknowns than equations, and an infinite number
of solutions exist (the underdetermined problem) and Eq.(2) is one of these solutions. Thi -
pseudoinverse solution is the minimum norm solution 117) to N1 X = Y, i.e it is the solution whose

outputs 4 are the least effected by input perturbations
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fhe associative memory described above is a HA.A The typical associative memory discussed is

the AAM. In this memory, the prior discussion is still valid with Y = X and MI = X X- (thus, the
AAM is a special case of the HAM). We feel that more attention should and must be given to H.kMs

Kohonen [I1 discusses X X + as the orthogonal projection operator, where the output vector* V

produced is a linear combination of the key' vectors with minimum MSE for the case of an AANI

The AAs and HAN\s described above are the most common associatie memories discussed 1

The use of the data matrix XT as an associative memory has also been suggested and shown to be a
preferable nearest neighbor associative memory for binary, [2 and gray scale key vectors. The
technique by which the associative memory is formed can be used to distinguish different associative
memory systems. In one model [4,5,61, the memory is formed from data matrices of the key' and
recollection vectors in a \I11 processor. The most common synthesis technique discussed forms the
matrix as the sum of the vector outer products of key' and recollection vector pairs l' Some specific
as.sociative memories [8) restrict the key sector elements to be 0 or +1. In synthesis, they sum the
vector outer product (VOP) of each vector pair and quantize the final matrix to 0 or -1. In other
cases, the diagonal elements of the memory matrix are set to 0 (usually to model neural networks) In
some memories, recollection occurs after one matrix-vector multiplication. In other cases, the output
from each matrix-vector multiplication is thresholded and fed back to the input of the system, and
the final recollection output is obtained only, after several iterations In one of the most popular
associative memories, the Hopfield memory 19,101, the key and recollection vectors are bipolar binary
and the diagonal elements of the matrix are 0 Some associative memories require sparse key vectors
for efficient recall. Most associative memories are synthesized as matrix-vector processors However,
analogous holographic associative memory synthesis techniques also exist :11,12,13

Thus, there are a large variety, of associative memories We consider HAMs and gray-level
memories and key vectors. Our genera) preference in image analysis is to use xk input key vectors
that have no unrealistic constraints (such as linear independence, orthogonality, etc.). In a subsequent
paper, we detail techniques to achieve this and provide examples of ways to achieve the more
important property of shift invariance in associative processors intended for image processing

2.2 KEY VECTOR REQUIREMENTS

Generally, key' vector image inputs cannot be assumed to be linearly independent, and thus the
practical use of associative memories for such image data is of concern. In some cases, linear
independence may occur, of course, but this cannot be guaranteed. If the xk are image domain

vectors (i.e. lexicographically ordered images), and if NI < N, then often we will find that the x k are

independent, or at least there is a reasonable assurance that this will occur However, we note that
there is no guarantee of this. If the xk are feature vectors, then generally N\ > N and the key' vectors

are linearly dependent. For the more practical and general case of linearly dependent key vectors, one
can employ singular value decomposition 114]. This algorithm produces orthogonal vectors and for
the case of linearly independent key vectors it addresses practical numerical stability, issues associated
with calculations of the inverse of V. This merits attention, since the condition number of V is the
square of that of the matrix X. The problem with the SVD technique is its high numerical
computational load, which precludes its use in real time and its use for updating associative memory

3



matrices A modified Karhunen-Loeve approximation to X' developed for r,.:t;, i:

discriminart furctions is quite useful here also 1151 It allonA operatoir o" : " 1 
-

linearly depevide:t ke' vectors. The technique used is to calculate the eigen ectors ,. th, correlkti,-

matrix from the much smaller dimensionality \'IfP matrix. We do this for the key vectrrs for eacl

class WAe retati only several (typically 3) eigenvectors per class We then ,rthogoane the

eigenvector.m from all classes (using Gram-Schmidt (GS) or related techniques All of thes(e

calculations are performed in the reduced VIP space, hence allowing real time calculations The

memory can then be easily described in terms of the original higher dimensiona'.ty Image space

These final eigenl ectors are then used as the rows of the associative memory, matrix We refer to this

as the VIP-GS associative memory synthesis technique 3 .

The direct synthesis of an associative memory, as the sum of vector outer ;rcducts of each
key/recollection vector pair requires orthonormal key vectors (and will not yield co:rect results even

for linear independent key vectors, since EXkXk T  X X T - x(xTx'XT n

orthonormal vectors). Similarly., the simple VIP synthesis of an associative merlorv also requires

orthonroma. key vectors. However, when a nonlinearity is used at the intermediate plane '4', where

the product of the input vector and the data matrix is formed, the requirement of orthonormal key
vectors can be reduced However, if the key vectors are only restricted to be linearly independent.

this method will still not achieve proper results The \IP-GS synthesis technique and the iterative

Vidrow-Hoff are txo very attractive and real time techniques for associative memory synthesis in the

practical case of linearly dependent key, vectors

2.3 ANALOGY WVITH PATTERN RECOGNITION LINEAR DISCRIMINANT
FUNCTIONS (LDFs)

We now discuss ho, the different solutions to M X = Y are related to d~fferent pa:ter::
recognition LDFs. For linearly independent key vectors, the pseudoinverse solui" is related to

various synthetic discriminant functions (SDFs) {15' for distortion-invariant pattern recogniti ,n. I e
the outputs from the pattern recognition system are analogous to the recollectior vectors in

associative memories and the key vector input images xk are analogous to the imag,-s to Le l~s;,ed

independent of distortions, etc. To see this, we consider the filter function (or as.,ciatIve memory
vector) h to be a linear combination of several key' vectors, i e

h ?ax = X a, (5)
-- -J - -

where X has the training images or key, vectors x as its columns and the vector a has., a, its elements

the coefficients a that describe the filter function h This filter is the solution a = \-Iu to V a = u

where V = XT X is the %IP matrix and u is the vector of desired outputs whose bit code denotes the
class of the input key vector x under test The filter function, when written as a ro% xector is thus
the following solution

hT= uT(XT2jIx. T -- uT (6)



This solution t is t h v e a-,, FLq (2) 'A ICT (ai -t i r orS :,: ) iis h c, 1) s4 u:,

with the corresponding roy of Y gi en hY the row vector uT cutput enT.h.g Iie use of 1K
SDFs (h 1 to hK) with different output codings uk or the analogus m eiit., , memcr. ca;, ti.,us

used to distinguish different versions of one class of an object and to discrimi_,.te it from ,tiher
classes. This analogy- is most attractive, since the hk filters synthesized at, ve can be rr. .

allow different distorted versions of one object (e g several xk input key v.ctors) to be Lss te

with the same encoded output (e g the same vk recollection vector) A hich Ailll rmoN deriot t(e cl:a,

subset of several input xk ky vectors (i e all distorted versions of an input c.:, be assigned the sane,
Vk

Incorporation of these pattern recognition techniques into associative rmnt-orv svnthes:s alVo\,s
significantly different recollection vector encodings from the conventional unit vector ones tc b,
employed Incorporation of these new recollection vector encodings and the associated new associatrt
memory synthesis techniques allows the size of the matrix to be significantly, reduced and it adds a
distortion-invarixnt property to the associative memory. As we will shoA, the use of such encoding
techniq'es actually provides improved noise and storage capacity performance over the conventicnal
unit vector HAN\s. We note that for the SDF solution, we must be able to invert V and thus this
technique also requires linearly independent key' vectors, or the use of advar.ced techniques in rh-
synthesis of such filters. We also note that many pattern recognition preprocessing techniques ha%,
been described to achieve the necessary preprocessing to provide linearly in ependent as wefl a_
orthogonal key vectors. Many of these techniques are off-line However, when the associatnv

memory, need not be updated, these synthesis techniques are appropriate

We nov. consider the analogy bet, een MSE associative memories sit!, linearv dependent ke
vectors and the typical MSE LDFs used in pattern recognition when the x k are feature vectors 1:.

this case, the LDFs are denoted by A. and the VIP projection values wK Tx determine the region I".

hyperspace in which the input key vector lies and hence determine the cla-s c" the input data We
note that there is no assurance that even the training set data will be correnctlv cla-s-ified bL t.-
technique (since this is an approximate rath:er than an exact solution).

Various LDF techniques to calculate ass,ciative memories are now summarized In each case, A~e

calculate a LDF w and use it as a row of our associative memory matrix \ We design this LDF to

yield an output of "I" for certain classes and an output of "0" for the other classes (i e according to.
the coding desired and required for that ro, of the matrix). A multi-class problem is addressed b.\
specifying t%,o classes for each LDF, %xith each of these two classes being subsets or groups of more
than two classes, with the output K-tupie or binary code allowing the final one-of-many class decision
to be made Use of such techniques alCws the application of associative memuries to image analysis
distortion-invariance, and can significantL increase associative memory storage capacity, as, \4e 'iA;l

note and quantify LDFs that can be calculated using the training set in-class and beteen-cla.s-
scatter matrices include the Fisher LDF and the liotelling LDF.

3. NOISE PERFORMANCE AND STORAGE CAPACITY
OF ASSOCIATIVAE. MEMORIES



V48' Vo96 N APPL l, 1) (0TCc
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eniphasic the key points with a miinim till' cf idtlli''C4 r %V
and introduce our notation. The input key, vectc'r is x ,K- w h, re xI

and n is a noise vector of zero-mearn noise w tL a cos a. larce .j.ris Y 1 V,

N ariance c the in,,put and output nise ULv c, anld C , w here the- 7.iac,

ax = E~x-}-E 'x)} For zern-mean data, cr5  = E~v2 } Ths- 1 s''e caP f-:,7

noise, sinice the asOciatise memory matrix operator N!IiS lin1eas: If ri ou:Cut ti rep
We use subscripts to denote specific vectors in a set and s i'ra cr.pts to den,- tt th el(e

vector In this nlotatLiCon1 a2 E((n ))(fromi the definitiu r Of n and ca
requires tA0 terms since v is not yet known), where v NI Ma. the recollection vectorN

to the key vector xa, and the expectation operation isq over only the elements of thevct

all vectors k

3.2 PRIOR RESULTS
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neorrect The d'cre~ainof this A()kI eyterse and thus it merits more detaijs

provide~ All steps art, provided iii appendices, with the results highlighted here M,.
simulationrs were performed for the kAM case 16, with hfe key vectors chosen, from
distributtin between -1 and -1 and lA ith the key sectors required to be linearly' inidepende
found to, be a requirement, although it is not noted in the original work) The key testI
formed by adding a zero-mean random ' ariable (wAith uniform distribution over -1 to
element of one of the random- reference key sectors1 For each associat ice memo-ry mnatrix
ke ey ctors leach of lerngth N) w~ere teste-, using one reference vecto)r with tendft
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vector. Since the key and recollection vectorb were chosen In thC same manner IN these eat

[151, their signal powers are equal and o02 ,/ri2 is equivalent to the input-to-output SNR ra

will use this SNR ratio in our latr work (Sections 3 4 and 4) as a preferable performance me

.\.A: more practical cases when the input and recollection vectors do not have the same signal pov
proofs of the various theorems to be advanced in this section and in subsequent ones do no

(J. oequal signal powers for the key and recollection vectors

ohLienl We now state four theorems [16' Proofs of each are provided in the appendices.
ectors _ 2 . NE '

e Theorem 1: For any matrix recollection v = M x, we find a / or 2 =, wh
-,'e the m.i- is an element of M and the expectation is over all elements of M.

IJ -

1e x is 2
output* Theorem 2: For an AAM with linearly independent key vectors, we find E{ri.2
output .

used). M/N
ts of a

t Theorem 3: For AAMs with linearly independent key vectors, combining Theorems I a
(w hich 2, we immediately find

sponds

Dt over 2/0'i2

* Theorem 4: For HAMs, we find

// E% = , 2 }E{Tr(_'}

T
where v is an element of Y, V X X, and the trace (Tr) is the sum of the diagoi.

-

elements of the matrix noted in parentheses following this operator. The first expect
value operator is taken over all elements of Y and both expectation operators are tak

7) over the entire ensemble of possible key and recollection vectors.

to) be

c aro0 3.3 DISCUSSION AND ANALYSISCarlo

n!form
IkTheorem I is useful since it applies for any matrix with no key or recollection vector assur

S 'cre We will use it in developing more general and more easily evaluated expressions of associative
each performance.

In put
dJ The result in Theorem 3 agrees with that of IKohonen [1, who obtained his result h

different techniques. This result shows and quantifies for linearly in.'ependent key vectors (r,I I

M < N) that a 0 2/ 2< , i.e. an A.Mh always reduces the inpuz noise (or in the worst case "hi
:he I- N, the input noise is not increased) This also hows that the noist improvement for a AAM I

as MN decreases (i.e as fewer vector pairs M are stored or when larger dimensionality N key

are used). For an AANI design, the amount of Input noiSt expected a is specified and the

determines the output noise co° one will have to contend with I:: later work, we will Quan,



amount of output noise that one can have and achieve a given probability of correct c~a..nf ic
tests different output recollection vector encoding schemes.

wVe

e for Theorem 4 shows that the amount of noise reduction in a HAMI depends on the key '.e'ct

The occurs through the Tr(\__ I) term) and that it also depends on the recollection vector choic
juire (this occurs through the yij term) and that its performance doe not depend as explicitly on \

as is the case with an AA.M. This is a most significant result, since AAM storage capacity a

performance depends only on M and N. The remark has been made [16] that HAM perform

be very poor, even with linearly independent vectors. To see why' this might occur, it is nc

the determinant of xTx can be small (even with linearly' independent xk vectors) This occi

xTx is nearly singular. In this case, Tr(._ l ) becomes large and poor performance .ill res

note that poor performance would also result from any' associative memory' matrix synthesiz.

the case when N-1 was hard to compute, i.e. when its condition number was large. \We note

general A.AM performance measure equation does not reflect the effect of the condition num
directly. However, the HAI expressions do reflect this issue, through their dependence on
matrix V. Thus, it may appear that HAM performance would be poorer than that
performance, even with linearly independent key vectors. However, this is not necessarily the
we have noted above. We will quantify these remarks in our data (Section 4) In deriving Th
we assume equal energy' for all recollection vectors (but their energy is not assumed equal t(
the key vectors)

We note that the ensemble averages in the equations in Theorem 4 make evaluation of the

performance measure for a HAM impossible to evaluate, except by a Monte Carlo techniqi

Monte Carlo method calculates 2 / 1 by averaging over a number of different associative r

(i.e. different key and recollection vector pairs) For this reason, the results of a Monte Carlo

as obtained earlier [16] are not necessarily a good estimation of a 02ai2 for specific problem.

other o 2/a 2 expressions are desirable, in which the expectation over the entire ensembl
required. In addition, in the prior tests 116], the recollection vectors used were random, h

than one "1 ", and had energy' equal to that of the key vectors. This is appropriate for an AA
not the conventional HAM situation and (and we shall show) the choice of the recollectio
significantly affects HAM performance. Specifically, the test results in 1161 are not valid
recollection vectors, binary encoded recollection vectors, etc. Also, if the dimensionality of
and recollection vectors are different, then the test results in [1C are not too useful. In addi

nS variance of the /7a2 /2 measure can be quite large (especially when averaged over a nu
different as~ociative memories). Thus, the resultant ro2/a 2 average can be meaningless a:

0 i

better (smaller) a 02 i/ values can result for specific HA\Ms \Vhen the rules Ae derive f
o • ) e

in g design are used, better ao'Ici
2 performance measures will result

Other a 2 /a 2 expressions are possible in the case of unit recollection vectors, Y = cl. wh,
ter constant In this case of HANts with unit recollection vectors,

ors

N 22 c 2 ,I)rV 1

7 0

the
"/a " = {c /i'{Tr'k_- 1



The second instance in which an fquation " thout all expected value operators is t.sx:

the case of orth~gonaI keN vectors In this instance uf IfISLs A ith orthogonal key %ectv,rs

C22 2}Tr'\~ ,  (
this

ade where the expectation operator is the average over all squared elements of Y Since C lK ir
IN equals E{yi } for Y = cl, Eq.(10 is equivalent tc Eq (9). Thus, in terms of performance, as

oise unit recollection vectors is analogous to using orthogonal key vectors. This is a notewort
can result, since one might feel that orthogonal key vectors would yield better performance Thi!
hat follows from linear algebra, since N' (and \-1) are diagonal if the key vectors are orthogon
hen yielding only the trace elements of the matrix

de r For cases when no conditions on the recollection vectors vk (such a~s unit recollection %ect(

the made and similarly when no conditions on the xk key vectors are made, Theorem 1 can be us,

)f V 1) 2

NIP alternate a0 '/ar expression can then be found by substituting Eqs (A10) and (A13) in the app

kM into Theory, I to obtain

as
4.a 0 t cri - = (1,.'K) E v n Vm Yim Yik,

Lt of o m k

where v mk is the mk-th element of 1 . Eq (11 ) is equivalent to Theorem I However, calcj
. 2using Eq.(ll) are preferable since it provides the result without the need to first explicitly comp

The

r)ies In our quantitative test data, we will use Eqs.(S), (9) and (11) for different cases Eq (S} app
yis AAMs with linearly. independent key' vectors and Eq (9) applies for HA2 s with liiiear inde F

key vectors and with unit recollection vectors Eq (10) applies for orthogonal key" vectors and
h us has no conditions on the recollection vectors or the key vectors

not

nore
3.4 PREFERABLE SNR ASSOCIATIVE MEMORY PERFORNANCE MEASURI

Lit is

ctor

unit All prior theoretical studies 1,165 of pseudoinverse associative memory noise performanc
2/ 2

k e used the a0 oi performance measure. Other work on associative memory capacity either d(

he consider HAMs, yields bounds (not exact expressions), or does not consider noise This (

r of perfor-,iance measure is valid for AA.Ms, but not for H.AMs, since its resultant value can be r

)uch (improved) artificially by merely reducing the energy of the recollection vecto i , b' usir

IA\ rather than binary-encoded recollection vectors). Our C0  cr C data verifies that unit recol
00 1

vectors perform better than binary encoded ones- To see the problem with the a , C
0 1

consider Theorem I for the case of a HAM If "e scale each xk by a constant ck and each v

is a constant cy, then the new associative memory matrix is M, - (c ,C)M, where M is the o

associative memory matrix The new expected value (denoted by an apostrophe) is related

expected value for the original matrix (denoted by no apo'trophe) by E{i -}
'  (c , cX2)E{

ii a



2 2 2 2
The new and old performarnce ratios are thus related by (- 2 /ai) (c /c )a 0 a 2 From this

2/ 2 rai Hoevr tis moe

see that increasing c /c y results in an improved new a' /a ratio However, this in; rovemer

artificial We note that this issue does not arise for th, case of an AAM (since for this matrix

recollection and key vectors are the same, and thus have the same energy and scaling factors) T

remarks also do not apply to earlier results i16:, where ejal energy key and recollectji 'cLors

used in the Monte Carlo data obtained. This ao0 'ri performance could be applied to an H,-I
Y - (or to binary-encoded recollection vectors, or to recollection vectors whose dimensionality F

Ing N), by appropriately, scaling the recollection vectors, s:ich that their energy and that of the

e N vectors is the same In general, with arbitrary key vectors and unit or other possible recollec
ult vector encoding schemes, the need exists for a different performance measure

ius

The performance measure we introduce is the ouput-to-intput SNR (signal-to-noise) ra

SNRo0/SNR i. The larger this ratio, the better the performance For equal key and recollection ve

energies, this measure and ao 2/ai2 are reciprocals. We define the signal powers as the expected v
An Iof the square of the elements minus the square of the expected value of the elements, i.e. we subt

ces off the average or bias energy from our calculations of signal energy. Thus, the signal energies we
are

2 EE i E 2  (12a)

2 i1 Eki) 2 ,Elk Ey (12b)
)n~s

where the energy values are averages over all elements i of all vectors k. The resultant S
performance ratio is then

fr~
t SNR 2 2

1)0 01 (13)0 0 I la
SNR sa

1 1 0

For AAMs (with s0
2  1 s) Eq.(13) reduces to N/M (from Theorem 3) which is the rcciproca

Theorem 3.

V e

ot Our concern lies with HAMs. For HAMs with unrestricted key vectors, we combine Eqs.(11)
(13) to obtain

ed
SNR s 2 K

52 2 (14)

SNR s mkl YimYik
SI m k

a
For IIAMs, with Y = cl (or for the case of orthogonal key vectors), we combine Eqs (10) and (13'
obtain

10
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(

SNR s 2 E{y 2 }Tr% - 1 }

2 2 2 E{ 2) 1 M ' { '
For zero-mean key and recollection vector , so = E{ 2 }and s EI =Y I _

these assumptions, H.A Nis with Y cI (or HAM\,s with orthogonal key vectors) yield

SNR N 1
0

SNR i  TrjV]TrjV 1 ]  M(

where the last equality holds for orthonormal key' vectors, since V X-- - I and Tr(V) Tr

= N1 for this case. We will employ the different performance measures noted in Eqs(3- 15)1;

quantitative comparison tests of performance in Section 4.

3.5 DATA MATRIX AND PSEUDOINVERSE HAM NOISE

PERFORMANCE COMPARISONS

A brief comparison of the data matrix and pseudoinverse HAM with unit recollection vectors
D is now provided. Linearly independent key vectors, each normalized to unity', .-ith al! elen
positive, are assumed. This is necessary for a comparison with no differences in the key vectors,
the pseudoinverse HA.M requires linearly independent key vectors and the data matrix associ
memory requires normalized key vectors The HAM withM.. X Y X and the data matrix with

XT are both M X N in size. The data matrix is thus equivalent to a pseudoinverse HAM with
xT.- Thus, in our performance comparison, we compare a HAM with Y = I to a HAM (the

matrix) with Y -= (XTx " 1. We use Theorem 1

a 0o2/ = / NElm 2 ) , (17)

,nce it applies for any matrix. For the HAM with Y = I and M < N, Eq.(17) is most likely les
one. For the data matrix, with each row being a normalized key vector, the sum of the sqt
elements of the matrix rows of M is just M, the average squared element is M,'MN 1 iN

02/a i 2= N(1/N) - I from Eq.(17). With Eq.(17) being less for the Y = I HAM, it will have

output noise for a given input noise level. This better performance is expected, since all outpu
the Y = I HAM recollection vector are expected to be zero (except one). To consider how ou
noise effects recall accuracy in the two memories, note that all Y = I HAM outputs are ideally
except for the single element with a "1" output, whereas for the data matrix, the non-one ou
elements are the vector inner products of the input and the different references and will clearl
greater than zero. Thus, the same amount of output noise in each memory can more easily, cause
matrix output elements to be in error (more easily than is possible for the Y = I HAM). 'I
differences must be weighed against the advantages of the data matrix HAM, such as it doe-
require linearly independent key vectors, it yields nearest neighbor performance, it has a large stc
capacity (compared to even the HAM with Y = !) and it easily' allows the contents of the data m
to be altered (by simply changing the vector in one row of the matrix).

J , mk mm mm m m mmm m mm mmmim• • mm



4. QUANTITATIVE DATA

This section describes our database, several different associative memories formed, test res
associative merrories for specific case studies using the different performance measures der

Section 3 and the Appendices.

4.1 DATABASE

The database used to provide quantitative test data (versus numerical calculations base
theory) for specific pattern recognition problems consisted of 32 X 32 pixel le-icographicaliy
binary images of aircraft. Each image was lexicographically ordered into an input key ve

dimension N = 32 = 1024. Two different aircraft, a Phantom ari a DC10, were used. The
occupied approximately 15% of the full 32 X 32 input image frame. Different images of each
rotated in yaw formed different versions of each aircraft for use in different tests and I

database. The Phantom-18 database contains 18 Phantom jet images at 200 increments in ya
a full 3600 variation. Our DCI0-18 database is similar with DCIO images used We err
Phantom-36 and DC10-36 database set in other tests. These databases contain 36 images pe
with 100 increments in yaw now used. We refer to the set of images used to form the memory
reference or training set. In some cases, we test the performance of the memory using othf
training set images at different yaw rotations. We refer to thes as test data. For one HAJ
Phantom and DCI0 data are used and the purpose of the associative memory formed is to dist
the type of the aircraft, as well as its orientation. In another H.A\ test, we consider only deter

the class of the aircraft, and not its orientation. For noise tests of a 2 /ai2 and SNR0 /SNR .

zero-mean Gaussian noise with five different standard deviations a. to the reference Phani
image. For each input test image with a given a1 or SNR i, we form 10 different input

(different input test vectors) with the same aI value and SNR. value (however using 10 di
realizations, different seed values, for the given aI input noise level). In all noise tests, noisy
images were not rebinarized. This allows a better comparison between theory and tests. To p
model certain real time optical spatial light modulators, we should rebinarize the noisy input
However, we feel that the results obtained with gray-level input test vectors would be represe
of those obtained using rebinarized input key vectors to our associative processors.

4.2 TYPES OF ASSOCIATIVE MEMORIES TESTED

To test and quantify associative memory performance, three different associative memorie
considered. For consistent results, all memories employed M = 36 key/recollection input vecto
(the Phantom-18 and DC10-18 databases). The AAM was formed from Eq.(2) with Y = X.
different HAMs were also constructed. HAM-I used unit recolleciion vectors with Y = I in
with a different K -N-1 = 36 element output recollection vector for each of the 36 input il
The second HAM-2 tested had N = 1024 and M = 36 (as did all associative memories constri
and used only two element (K = 2) output recollection vectcs fI,0:T and [0,1]T for the Phanto

e I



DC]0 Inputs respectiv ely (I e. all 1S Phantom key vectors were a&signed the sa.:. 0,v ',put rf.c:

vector i1,01T with the other recollection vector 10,11 used for all DC10 inputs) Since botP lhan
and DC10 inputs were used in fabricating the associative memories, they acleve both ,r.tra-c

I recognition (e.g. the recognition of different distorted versions of the same aircraft, I e a Pi ant,

and inter-class discrimination (distinguishing a Phantom from a DC10) The lL-I.N-2 is appropi
for image analysis when the type of object rather than its orientation is desired This is c

different from the HAMts conventionally considered. For all associative memories, we calculated
using the L\ISL Generalized Inverse Subroutine. All key vectors were found to be fIn
independent This was verified from a calculation of the condition number ( m, = 183)

ed = xTx, which showed that the rank of V, which equals the rank of wa.s N 1 36

of pseudoinr erse thus equals X + in Eq.(3)

aft
aft
U r4.3 ASSOCIATIVE MEMORY TEST RESULTS USING THE c 0 -Ci MEASURE

ve r
a Our initial test results are summarized in Table 1. Each entry in this table is the average ol

realizations of noise with the standard deviation listed. The performance measure tabulate
') 0 '9 '9

o"he /c " for the AAN. and the two HAM\is constructed. The average of the measured C value
all 50 noise image tests for each associative memory are given in the bottom of the table

st, theoretical value for the AA.M is calculated as M/N from Eq.(8) and it agrees quite well, within
ish with the measured average. For both HA.fs, theory and experiment also agreed quite well (wA
ng 1.5-. and 11% ). The theoretical values for HA2M-1 (with unit recollection vectors) were calcul

dd from the trace of \ in Eq (9) with c I I and K = M = 36. For the second HA\l with only IK

00 output elements, we calculate the theoretical value using Eq (1I) Several iIitial obvious remark!
in order. First, we note general good agreement between theory and tests Secondly, we note

e ,
H..M-1 performance is 50% better than that of the AAM (the lower a 0 ai performance mew'
indicate better performance).

'ut

The results (for the specific key and recollection vectors chosen) are quite different from other
v e

Monte Carlo results averaged over different HAMs (using random key and recollection vect
These prior results precicted average HAM performance to be worse than that for AA i\s by at
10% when M > 0.2N. Our final comments concern the performance of the two H N\s. The se
HAM (with only two output recollection vectors and two recollection vector elements) perfo!
worse. This occurs since this matrix is 2 X 1024 with its first row being a sum of the first 18 ro,
the first HALM and its second row being a sum of the second 18 rows of the first H.ANI Recall

rs the size of the first HA.M- 1 is 36 x 1024 In this case, summing the rows of N. increases E{m

causes an increase in a 0 /0.2 (and thus poorer performance) In general, summing Lhe rows o

first HAM will not always increase E{mij 2 }, since the elements of NM are bipolar. Here, an Inc
occurred, because the key vectors corresponding to the added rows are members of the same

d (rotated yaw views of the same aircraft) and are thus similar, causing the added rows to be sir
We discuss these results and preferable performance measures later in Section 4.4.



TABLE 1: /o2/12 for AAM and 1{A.M

. AAM HAM HAM~[1.01T 10. 1 T
= outpus

0.2 0.0352 0.0220 0.0949

0.3 0.0359 0.0218 0.153

0.4 0.0400 0.0253 0.0949

0.5 0.0323 0.0180 0.201

0.6 0.0387 0.0236 0.0655

average 0.0364 0,0221 0.122

thory 0.0352 0,0218 0.136

4.4 ASSOCIATIVE MEMORY TEST RESULTS USING THE

SNR,'SNR MEASURE

We now test and compare our three associative memories using our SNR ratio performal
measure. Our results are shown in Table 2. Larger values for this performance measure indic
better performance. In each case, the data presented is the average of 50 runs for five different nc
a, values, with the measured data obtained from image domain tests These measured data are t

compared to the associated theoretical equations. The AAM results are the reciprocal of those gi'
in Table 1. For H.A.M-1 (with unit recollection vectors), s 2/s. 2 is small and for HKM-2 (with 1,(

or 10,T recollection vectors) this ratio is large (since HAM-1 has more zeroes in each recollecti
vector). Thus, the SNR performance of HAM-2 is better than for HAM-I (although its a. o21

performance was worse). Eq.(13) and Table I were used for all theoretical calculations in Table
From these specific tests, we find AAM noise performance to be better than HNM noise performar
(as one would expect) and that different HAMs (such as those with K = 2 output elements, t
number of general classes of the data) are preferable to the conventional HA-Ms (with Y I ur
recollection vectors with K = M = 36 elements and 36 output unit vectors). This represents a n(
result. These quantitative results in Tab'e 2 are not necessarily general trends, but are da
dependent as we now discuss.

The performance of an AAM depends solely upon the N1 and N values. HAM performance depen
upon \'I with HA.M-1 performance depending only upon the diagonal elements of V- (because DCl
are slightly larger than Phantoms, the diagonal elements are not the same) and wi~h HA.M
performance depending upon all elements of V.. Since HA.M performance depends upon the k,
vectors used, no general conclusion on AA.M versus HAM performance is possible However, HK1N

5 with new (binary) recollection vector coding consistently perfor,- better than H-A.Ms with convention



unit recollection ectors Our theory in Secti( ii 3 predicted ts (for t.Ke >N ? I ; , '

meas u re) The prebence or the elements of Y (recollection vectors) ir, Our equations ;r Sectc

confirms this theoreticall., and our test data in I1 able 2 qua;,t;i ) t . J,, ed si A, L 1

HAM-2, which is the reason why our ne, IA-M-2 outperforms A.- -I

TABLE 2: SNR /SNR for ,AM and [AM

SNR o / SNRI

AANI HAM I HA-\ 12

avcragt 2747 9.14 15.33

thory 28.41 9.26 13.75

4.5 LARGE CLASS PROBLEMS

The concern in associative processors should be large class problems (M large) We now bri,

consider bo, AAM and H.kM performance varies with Mi/N We expect performance to decrease
M,.'N increases From Eq (8), we expect AA performance to redu-e linearly a-s N increases
ikMs, the performance variation with NI will depend upon the specific data Table 3 shows in,

results obtained Eqs.(8), (15) and (14) were used for the three associative memories respectivel,

second database used 36 images of each aircraft at 100 yaw increments and thus represents a largei
= 72 class problem. AAM performance is seen to be linear with M and thus reduces by a factor (
as shown The reduction for the HAMs is data dependent. From these data, "e clearly see that H.
performance does not degrade as fast as A.\M performance and that at M = 72, the performancf
H.A.M-2 and the AA.M are approaching each other. Again, this result is not a general trend that
can always be assured of (since HAM performance is data dependent). However, this lends furt
justification for attention to HAJM storage capacity and noise performance and to different out
recollection vector encoding schemes.

TABLE 3: Associative Memory SNRo/SNR Performance as M Increases

TYPES OF ASSOCIATIVE ,MEMORY

ATABASE NI AAM HA.I - HAM-2

(L=) T -

1,0' and '0,]

Phantom-18 36 28 4 926 13 75
L. i0-18

Phintwom-36 72 14.2 6 56 11 84

DC10-36

15



5. ASSOCIATIVE MEMORY _jPDATING

Brief remarks are noA advanced on updating (adding, deleting and rea.s.signing key, recollect,:

vector pairs) in associative memories We now use subscripts to dei:ote the number of vector pal

stored In the case of an associative memory' formed from \1 key/'recollection -ector pairs. M'j
Y V 1X T In this case, we can add a new key/recollection vector pair and calculate the neA

V-1bytebrengagrt,

matrix from the new V~l ~- This is possible directly from --M by the bordering algorih

Extensions of this algorithm allo%, a vector pair to be deleted. This deletion is ea.siest if the last x

and vM vectors are the ones to be removed To delete another vector pair, we first make this the !a

vector pair. When the VIP associative memory synthesis technique is used. the key ectcrs a

orthonormal (this can be achieved on-line as we have discussed elsewhere), and updating of the ma'r
M is very simple In a VOP associative memory, the addition of a vector pair is achie ed I
determining the amount of each vector that is new (orthogonal to the prior Nector pairs) and includ
it (as a VOP, etc.) to the memory matrix. Deleting a vector proceeds similarly, but requires that t
vect-ors be removed from all prior vectors. Updating a data matrix memory is trivial a
associated row is simply' replaced, with no concern for the other rows

8. SUMMARY AND CONCLUSION

This paper has advanced various new theories and expressions for associative memories for neur
processing. We first noted the different types of associative memories, the key vector assumptio
generally made and the fact that many of these assumptions are not necessarily valid We advanc
new on-line V1P-GS techniques to calculate the pseudoinverse memory from an orthogonal basis so
We also noted the differences in storage capacity and noise performance (both issues must
considered together) for AAMs and HA.M\s We advanced a neA and preferable performance measu

for more general classes of HAMs We also derived equations which al'K,% the performance of differe
associative memories to be computed more easily and without Monte Carlo techniques Our resu
showed that H1AM performance depends on the key and recollection vector choice (whereas A-A

performance depends only upon the values of Ni and N). We have noted the similarity betwe
associative memory' synthesis and LDFs as used in pattern recognition We find HA-M performance
be quite dependent on a set of recollection vectors, and we offered new associative memory desig
with new recollection vectors (with better performance than conventional HAMNs), desis
incorporating LDF design techniques, and associative memories with increased memory capacity a
reduced memory' size. Initial results with such memories appear very promising Initial remarks
associative memory updating with several new algorithms were also advanced
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APPENDIX Al: PROOF OF THEOREM 1

The output %ePtor is

, L. NI L (A]

, ubstiting (- 1) i1to thc definliti,,n of C Id

CT E11 (=A D rn m }[{n2nk} (12

t sing the, propcrtN of uncorrelated noise that E)njnk} = E{'n 2 the- Ael:, r. i.

a:ld the Ind,.penidenc- of C1 from j and k. NAc obtain

C2 = Nt L{F j } (A3)

D;viding both sides b, o, I Ae obtain Theorem 1 This result is valid for an.% rva'-rix sAhose ke-\
vect-ors are of dimension N and not just for the pseudoinverse matrix solution Wrizr.g the squared

Euclidean norm cM N, we see 17i that the minimum norm solution is N. = " X- it can a s.- be
shown that this solution is optimal for uncorrelated noise, and that it minim zs E.', 2 and a's

2/

0', i e the SN ratio for th case of uncorrelated nose)

APPENDIX A2: PROOF OF THEOREM 2

For independent ke. ,ertors, the olut.n in Eq 2) Aith X - defined b. E, . i :> ,] "

a:. A-A.M

N i X - = X(XiXYIxT (A4)

The trace of M MT is

Tr(N ) M T l Dv T =l f T.. ,
- - ' i ii

"~h r h l:c-' t ' o lo ..... .

,L re th ,i folalots fiom the fact that N' i idempotent (NI = N T a\
N IT The eigenvaues oI an idempotent matris art, 0 or 1 The number of eiger\a)" t I

i e the rark of N. an! the trace satifi,s Tr( ) :NI ri NI: To deternine, r(NI) for N X X ,

first s ,ho that r Xi M ard that r(X )  Ni It thn fu,,s that rN. - V -- Tr\ 4 " -

Tr'kl' - r: 1  M NI (A 6
IIJ

Using (AG), %e re Thern 2



END9

7T &%rGNAm



J2.

11111 2 11111

1.25 IIAI, ff Th 16HP



~2  Tr(M) ME_( (A7)

N2 N 2

APPENDIX A3: PROOF OF THEOREM 3

ThiL follows directly by substituting (.A7) into (A3)

A-PPENDDC A4: PROOF OF THEOREM 4

We consider Theorem 1, which applies for any matrix and derive an expression for E{mIj 2 for the
Tt

HAM matrix written as N1 = Y VIxT. We first rewrite (A5) for the general H.AM case of
recollection vectors of dimension K as

Tr[M MT .. (MMT) -2L~m 2  (A8)
i . i

where the summation over i runs from 1 to K and the summation over j runs from 1 to N. To

evaluate the Theorem I equation for a RAM, we must obtain an expression 'or E{mi 2}. Letting the
key vectors xk (of dimension N) and the recollection vectors vk (of dimension K) be random variables,

we form the expected value of both sides of (A) to obtain

E{TrlM MT;} - SZEfmij2}  (A9)
i j

The double summation in (Ag) can be rewritten as

E{TrM -LTI} = KNE{mj}. (A10)

To evaluate Theorem I for this case and hence E{mij 2} , we require the trace of M MT

To obtain this, we substitute Eqs.(2) and (3) for an HAM into M MT and find

M MT =- Y \-,),T (All)

The diagonal elements of the matrix product in (All) are

M YT)ii - E fVmk' yimYik ,  (A12)
rn k

where both summations are over the M vector pairs. The trace is the sum of (A12) over the diagonal
elements (i = 1 to K) yielding

20



Tr( M LT) -f f Y -1 (A 1 3 '
i k in) ik

To evaluate (A9) and hence a°i C I , we form the exp-ctd valu, of both sides of . , :.

the expected value operator within the summation as in (A 1) \Vit .'atlsticall', un- .rr' ,, ."

recollection vectors, v mkl and yiimYik have no cross-correlatins and the expected %au,. ,, t,:-

product is the product of their expected values In practice, this asumption is not realist , s:!,,- the.

lk depend upon the xk and are thus correlated (except for the case Y I) In tests in 1 east

element of each v was chosen at random for the data that they used Thus, E{.y a

E{yim 2} )km . This result is not valid for binary encoded vk vectors, but is valid f. r unit recol, ,

vectors. With these assumptions,

Vmk-I L. lT Z ),, .r2 - 1)E 2

E{TIM MT]}=2: E{v~ }L'im } 6 kmn - E.Z E{v , }E{Y"}
i m k i m

E L' E{v'l},'EF{Yim2}, (A14)
M n

where the last equality follows since E{vmm - } is independent of i The second summation in (All1 !s

K times the expected value and E{yim 2} is independent of m (for the case of recollection vectors with

equal power). This yields

E{Tr,MT]} KE{yim2 }EfTr ,XTX1). (A15)

Substituting (A15) into (A10) and the result into Theorem 1, ,ke prove Theorem 4
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ABSTRACT

A directed graph processor and several optical realizations of its input symbolic feature vectors and the multi-
processor operations required per node are given. This directed graph processor has advantages over tree and other
hierarchical processors because of its large number of interconnections and its ability to adanrtively add npw -
and restrueture th- graph. Thr us: .f 1L bic ,icepts of such a directed graph processor offer significant impact
on: associative, symbolic, inference, feature space and correlation-based A] processors, as well as on knowledge base
organization and procedural knowledge control of Al processors. Initial iconic alphanumeric data base results
presented are most promising.

1. INTRODUCTION
12

Hierarchical tree classifiers have long been used in pattern recognition, ' particularly for non-parametric
problems. 3, 4  Much has been written concerning optimization of tree structures using information theory
techniques.5, 6, 7, 8 However, hierarchical structures have many drawbacks. 9 A major problem is that an incorrect
decision at a given node can result in misclassification, since subsequent nodes are not designed to accommodate prior
classes. Back-tracking through the tree can compensate for this, but at the expense of classification speed. 10 The
major problem is the rigid structure of the tree itself, its limited number of interconnections, and its lack of

adaptivity. The optimization techniques mentioned in the literatures , 6, 8 are very cumbersome and require a great
deal of processing. This becomes a problem when an additional class has to be appended to the tree. The problem is

that the new class must be added as a terminal node of the existing tree,9 but classification of future objects of this
type is penalized since the new node was not fully integrated into the tree structure. To maintain optimization, the
tree must be entirely redesigned, using one of the optimization schemes cited above, for each new added node. This
report suggests an alternate modeling for large-class classification problems using directed graphs. Our new version
of directed graph techniques is very flexible because new classes and restructured graphs can be accommodated easily
without penalty. Our proposed algorithm for directed g,:aph construction is ideal for parallel opt;en! Ahitectures
that can quickly perform the computationally intensive steps of multiple filter or discriminant function comparisons
at each node of the graph. Optical processing is particularly attractive because of its ability to perform many
parallel comparisons concurrently.

The outline of the paper follows. Section 2 explains the topic of directed graphs and introduces the terminology
used to describe them. Section 3 extends the concepts of a directed graph to model general classification problems.
Section 4 outlines our directed graph algorithm and shows its versatility for adaptation and alteration/adaptivity in
the construction and use of the graph. Potential methods of handling inpu.t object distortions are also presented.
Section 5 outlines potential optical architectures to produce feature spaces and to implement the directed graph
algorithm in parallel. Section 6 summarizes the findings of this report.

2. DIRECTED GRAPHS

A directed graph (sometimes called a digraph) is a collection of nodes or t'crtices t',n, and a collection of arcs



I Iw I

joining some or all of the vertices.1 1 An example of a directed graph is shown in Figure 1. Note that the graph does

not have to be symmetrical. The presence of an arc from vI to v 2 does not guarantee that an arc also exist from v2 to

V1 . Symmetry between vertices can be accommodated in this structure by explicitly connecting two nodes with an

arc in each direction, as shown between v and v3 . Two vertices joined by an arc are adjaccnt. The indegree

(outdegree)1 1 of vertex vn is defined as the number of arcs entering (leaving) vn.A loop is an arc starting and ending

on the same vertex, like the one at v A path exists between two vertices if one can travel from one to the other

along existing arcs, as between v and v3. The cardinality of a path is the number of arcs contained in that path. A

path which starts and ends at the same vertex, such as v2 -- V4 - v5 -- v 2, is called a circuit. A graph is diconnected

if some nodes are not reachable from other nodes. This is the case for vertices vl-V 5 which are disconnected from

V6 -V 8 .

1.707

1)4 e 8

Figure 1: Directed graph

An adjacency matrix11 A determines the arcs between vertices, where the element A(ij) is equal to one if the
graph contains an arc originating from vertex v and ending at v. or is equal to zero otherwise. Each row of the

adjacency matrix gives the set of adjacent vertices for a given node. The indegree (outdegree) of vertex vn is equal to

the sum of the entries in the nth column (row) of A.

A set of matrices {An} can be defined where each row of A n is the set of vertices that can be reached by paths of

cardinality n or less. Using this definition, AI=A dczcribes simple adjacent vertices. Let the operation S denote

binary matrix multiplication, calculated as normal matrix multiplication with numerical multiplication and addition
being replaced by logical AND and OR operations respectively. Similarly let E denote a matrix logical OR

operation. Then:

A,+=A n (I A), n > 1.

Simply stated, Eq. (1) states that vJ. is reachable from ti with a path of cardinality n or less if either A n (i,J) is one

or An-1 (i,x) and A(xJ) are both one, i.e., a path of cardinality n-i or less must exist from v to v and an arc from

vZ to v. must also exist. Since all problems are finite, meaning that the size of A is finite, a stable result

(Am +1 An) will occur for some finite m. A m "is called the extent matrix .E- it contains the set of vertices that are

reachable from every node by any directional path.

3. DIRECTED GRAPHS FOR OBJECT CLASSIFICATION

A classification space can be modeled as a directed graph by mapping each class to a node in the graph. If a wide

discrepancy exists between individual members of a given class, distin. 1 subsets of that class can be mapped to
different vertices. (In further discussion the term "class" will be used e,, define the set of objects represented by a
node or vertex, regardless of whether such a set is in reality a sub,.,-- of a larger class which is represented by



several vertices.) Each vertex has associated with it a data vector, either an image or a feature vector, for the given
class. The arcs between vertices are chosen to show the similarity or connectedness between classes. If two vertices
are adjacent, the classes they represent should be more similar than two classes represented by non-adjacent vertices.
The primary f-cus of directed graph object classification is to determine A. Our primary attention is: to construct
such an A or graph, its use in pattern recognition, and the role for parallel multi-processor optical systems in such a
directed graph knowledge base organization or procedural knowledge or control system.

Object classification is achieved by finding the vertex (node) within the graph which best matches the input data
vector. The process could start by comparirg th- input class to several selected vertices in the graph. The starting
vertex is the one which most resembles the input data vector. The data vector is then compared to each of the
neighbors of this node. Assuming the starting vertex does not represent the input class, a move is made along the
arc to the neighbor vertex which is most similar to the input data vector. The input vector is then compared to each
of the neighbor vertices of this new node. This process continues until the vertex being examined is more similar to
the input vector than any of its neighbor vertices. If the similarity exceeds a certain threshold, then the input belongs
o the class represented by that vertex. If the threshold is not exceeded, this vertex is a local maxima. One then

continues the search to find other higher maxima (using perturbation, i.e. jumps to other regions of the graph). If
every node has been examined and no maxima exceeds the threshold, the input data i. viewed as a new class and
either a new node (class) is added to the graph or the graph is restructured (depending upon menw,) i~r:it'ions).

Searching through a directed graph is very similar to traversing a hierarchical tree classifier. All such algorithms
yield the final node much quicker than a breadth-first search of every node. The usefulness of the directed graph
appruach w2 discuss is the increased flexibility of its structure compared to that of a tree. Unlike a tree, one can
start concurrently at several different places within a graph. In addition, changing the starting node is not just a
superficial improvement like jumping to a lower node in a tree. Assuming the graph is connected and that each
vertex is reachable, the whole classification space can be searched from any node, which is not the case for a tree.
However the order of a graph search can vary significantly, siLce it is strongly dependent upon the starting node. If a
crude estimate can be made about the approximate location of the unknown input class within the graph, starting
nodes can be picked in that general neighborhood. This will greatly reduce the search time required to examine the
whole classification space. We discuss this in Section 4.4.5 and in Section 6.

A major benefit of the directed graph approach is the ease with which new classes can be included in the graph.
Adding a new class to a tree is restrictive, since additional nodes can only be affixed to terminal nodes or leaves of
the tree; otherwise the whole tree must be redesigned. The interconnections of a graph, on the other hand, can be
extended to incorporate new nodes quite easily. Once a graph is modified to include a new class, classification of
objects of that class occurs as routinely as for objects in the original classes. Details of this procedure are given in
Section 4.

There are a number of pitfalls of varying severity than can be encountered in a directed graph classifier
procedure. These include:

1. Disconnected subgraphs within the graph. This could make proper classification impossible, unless
perturbations are included (as we suggest and detail) or unless the interconnection of the graph (as we
detail) are designed properly.

2. Vertices within a given subgraph with indegree equal to zero. Tle problem is that a vertex with an
indegree of zero is unreachable from any other vertex and could only be located if it was declared as a
starting node. The choice of starting vertices should include some of these nodes. Our graph synthesis
method and our perturbation step overcomes this problem.

3. Local maxima. The unknown class is theoretically reachable from the starting node, but is not found due
to the presence of local maxima in the maximum-ascent approa'h. Rather than backtracking, we employ
perturbations to overcome this problem.

4. Circuits (cyclic paths) within A. A circuit exists whenever a diagonal element of E is non-zero, meaning
that a node is reachable from itself. Since a maximum-ascent algorithm can never return to the same
point while still traveling uphill, a circuit is actually a redundant structure which can never be utilized
but could reduce the processing speed of a classifier. For a completely connected graph, circuits are
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unavoidable. Since every node is reachable from every other, a parent node must be reachable from its
neighbor nodes. This requires the use of many circuits. These circuits should be as long as possible,
reserving shorter paths for realizable traversals. Shorter circuits will increase the average search time
since they force more useful pLths through the graph to be longer in length.

Our directed graph processor: uses perturbation, insures connectivity and reachability and long circuits, and it
employs hard decisions (rather than simulated annealing techniquesl to overcome these potential problems. A
recurring problem in large class searches is local maxima.9 Our two solutions to this problem are now noted.
Backtracking is included in our graph by including a .,orking memory with the prior node (not taken) with the
largest correlation. Perturbation is included in our graph algorithm, by allowing jumps to new graph regions or
prior high-correlation nodes. We prefer hard decisions to simulated annealing (which allows moves to less optimal
nodes to occur with finite probability, depending on the correlations or VIP values obtained) to reduce the search
space and search time. The high threshold r we employ also facilitates correct classification (we adjust r depending
upon the number of image pixels and the amount of noise expected).

For pattern recognition applications requiring distortion invariance, we will generally employ a distortion-
invariant feature space, using optically generated features. 12 For high-clutter and multi-object cases, we will utilize
optical ccrrelators. When distortion-invariance is required in this latter case, smart correlation filters are utilized. 13

14,15For more advanced problems, symbolic correlators are utilized. We emphasize the general knowledge base
structure and interconnection (hence its relevance to associative processors, neural processors, and to procedural
knowledge rules as well as implicit declarative knowledge inference machines). We use the general term correlation
to refer to the use (," the nearest Eteighbor filters per graph node in a correlator or the use of VIPs on input feature
vectors. The use of multi-class SDF feature extraction filters16 to test the M nearest neighbors per node is not
recommended (for this large class case considered) since unknown (untrained) inputs per node can produce erroneous
results. Thus, the discriminant vector or filter used per node in the graph is that due to the one class considered at
that node (this filter can and in many cases is a single class SDF). This filter choice yields better hign-confidence
results, which is our goal (versus simulated annealing).

4. CONSTRUCTION AND USAGE OF A DIRECTED GRAPH CLASSIFIER

4.1 PARALLELISM AND MULTI-PROCESSORS

In order to build a directed graph classifier, the outdegree M of each node must be selected. Mi is often selected
depending upon the parallelism possible in the processing architecture. If V=1, a search through the graph would
be entirely sequential. If the number of nodes is L, the search time would then be on the order of LT, where T is the
time required to perform the one correlation at each node.

For cases when Af > 2, the number of nodes which must be searched (A! comparisons per node) in an "optimal"
complete directed graph is on the order of (log,, L), for L :Af.10 With A1 nodes checked at each level, an optimal

L-class classifier will require x levels, where L-= Z:1 M'=(Af '-1)/(M-1) nodes, i.e. L(A-)=Arx '. Taking
the logm of both sides gives logML+log,(M-l)=x+1. Assuming A11, then log. Af-1)=l and we find x=logfL.
This assumes that the graph is laid out such that every node can be reach.ed by exactly one path of length log Mf L or
less. A graph which satisfies this condition from any set of starting nodes is very difficult to obtain. A graph
efficiency -1 < I shall be defined as the inverse of the factor by which the actual search time exceeds the optimal
search time of log Mf L. Thus,

ISearch time =O(-logM n)=O(ogMf- L). (2)

-y is a measure of the interconnectedness within a graph. Large -y is preferable It iq very dependent on the size snd
structure of the graph, as well as the starting nodes chosen. We expect -y to decrease as L increases. If the decrease



is not too rapid, good performance will still result. Graphs with many short circuits generally have poor
interconnections and will have low values of - and longer ciassification times. Conversely graphs with few short path
length circuits will have higher -y values and faster classifica'ion times. A trade-off must be reached to allow for
sufficient interconnections while keeping the classification speed high.

For a sequential (or single channel processor) system, the processing time at a given node is equal to the time it
takes to correlate the input with the node's M neighbors, which is equal to MT. Therefore, the total processing time

is O(1MT logM L). Since L and T are constant, this optimum M is obtained by minimizing the processing time with
respect to M for M > 2. Assuming -y is independent of M, we find the minimum total search time for a sequential
one processor system when M-2. This result is faster than the prior M=1 case.

If a parallel processor (or multi-processor system) which can perform N correlations concurrently is used, the time
required per node is O(n7J, where n is the lowest integer such that n > (M/N) and T is the processing time to

11perform the N concurrent correlations. The number of nodes which must be searched is still 0(- logm L). The

minimum processing time is found by minimizing -nT logM L with respect to M, which occurs when M N assuming
-I

-1 is not a function of AL. Therefore, optimal classification speed for parallel multi-processors occurs when the
outdegree Al of each node is equal to the number of processors (i.e. the number of correlations or node VIPs which
can be performed concurrently by the parallel system). We use the term correlation to refer to the operation
required at each of the Ah neighbor nodes. This can be a vector inner product (VIP) for the case of input features
and some symbols. It can be a 2-D correlation for the case of iconic (image pixel) input data.

A similar analysis shows that the same value of XI also represents the optimal number of starting or initial
vertices for a given architecture.

4.2 SELECTION OF Al NEAREST NEIGHBORS

The construction of the graph from initial data and the updating of the graph for new data are analogous. For L
input data column vectors x., their similarity is described by the VIP matrix R with elements r(ij) E[sTs) for

i,j< L. We normalize R by weighting it by w to obtain R =wTRw, where w is a column vector with elements

ut, )=[ [F=_ Ii(J)21-1/2. Normalization by the difference between the input data vector and the mean data vector is
also possible. The weighting by the inverse of the magnitude of the data vector produces R with diagonal elements

equal to 1 and all other elements less than one. This presents a vector with a high magnitude from dominating the
correlation results 7 while still retaining a positive-definite nature matrix for R. From R. , one can produce an
adjacency matrix A with elements

1 if r(ij) is one of the Al largest elements in row i of R, , i ) j

0 otherwise.
The provision that i 3 j prevents single node loops in A. The reachable extent matrix E can then be determined
using Eq. (1).

From tests, we find that A computed from R by Eq. (3) alone yields a well-structured graph of nearest-

neighbors, but is not necessarily a well connected graph. This is especially apparent when one considers a multi-class
problem where there are Al- I very similar classes. Using the above procedures alone, these AI+I classes will form
an isolated subgraph, unconnected from all the remaining nodes. We thus use R m to assign outgoing nodes and a
more detailed procedure (detailed below in Section 4.4) to provide incoming nodes and the connectivity of the graph.

4.3 DEFINITIONS



The following definitions will be used in subsequent analysis:

1. L is the number of classes currently represented in tile giaph;
2. L is the maximum number of classes (nodes) permissible in the graph. It is upper-bounded by the

memory constraints of the system;
3. Al is the maximum outdegre permissible for ai j node; it is determined by the degree of parallelism in

the processing architecture (the number of channels which can be processed concurrently);
4. x is a column vector representing the new original input data;
5. x' is the normalized data vector for the new input data;
6. s i , i < Lmax is the normalized data vector (discriminant vector) of class i (i.e. at node i);

7. r is the acceptable threshold which must be exceeded for a match to occur between the input and a given
class;

8. v c is the node currently being examined;
9 . VL is a new node being appended to the graph;

10. Ci,j), i <L, <M, is the j-th highest element in the i-th row of Rm;

11. K(i,j), i < Lma, j: M, is the column number of the i-th highest element in the i-th row of Rn;

12. 1(i), i < Lmax, is the indegree of vi;

13. E-i,j), i,j < Ln 1 ,is the (i,j) element of the reachable extent matrix;

14. Z(i), 0 < i < Lna, is an LMax+i element work array containing the result of correlations or \Ps of x'

with previously stored classes (represented by si).

The matrices C and K are actually abbreviated versions of R m and A, respectively (containing their largest

elcments). The i-th row of K contains the column numbers j where a(ijA=l. Similarly, the i-th row of C contains
the elements of R. corresponding to the same locations where a(ij)-1. The C and K matrices reduce the storage

requirements by a factor of L / A!.

4.4 OPERATION

Figure 2 illustrates the basic operation of a directed graph classifier. The input data x' is normalized and (if
required) distortion invariant. An initial threshold 7 < 1 is defined to determine whether an acceptable match ha.
been found . each --- I- We ii.k: - '7 Zh 5r .. . at dti , ,ct % ill not be categorized together and yet
not so high that any noise in the input will inhibit proper cl-,sification and force the graph to create a new class.
With low noise expected, one should set r conservatively high. Then, even minor deviations in a prior input will
cause the graph to think of the input as a new class. As the number of classes grows and approaches L ,nar the

threshold is lowered, similar nodes (classes) are combined and the graph is restructured. This forces a new
:ogmentation ,f the data. This will enable the classifier to adjust r to the actual problem set, while controlling the
number of nodes in the graph. The input data can be time sequential scenes, objects. ,- the contents of a knowledge
base. Assume that the input will be a sequential stream of class data including noise anl possible distortions. The
steps of the algorithm for synthesis or use of the graph follow.

4.4.1 Initialization of the Graph

1. Initialize all matrices to zero.
2. Preprocess the first M input data vectors x., yielding x'.
3. Since we started from a zero-class classifier, these A vectors are stored as the first Af nodes s, (for

i < Al) in the graph. They are used as the initial starting vertices. L is set to M\f.

4.4.2 Classification of New (Subsequent) Input Data Vectors (Iterations)

This iterative procedure applies in general when the graph contains more than A! nodes.
I.

a. Preprocess the input data vector to yield x'.
b. Correlate x' with each of the starting vectors in the graph. Set the current node t, to the vector

with the highest correlation with x', and store the correlation as Z(O) maxxTs,), for all i < Al.

Z(O) is the current maximum correlation.
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c. Correlate x' with the Af neighbors of vc, found in the matrix K. Store these results in

i) .K(v~i), for a:1 I - j 1. Tint- C3,lcuLa!tl-7s are rnt rxreecive. Q - f, the neighbors

of the current node could be neighbors of previously searched nodes, in which case their correlations
would already have been calculated and stored in Z. Recalculation of them is not necessary.

d. Look for the highest correlation among the neighbors of t If this is greater than Z(O) then set Z(O)

equal to it, set v to that node, and repeat step c.
e. At some point Z(O) is gfeater than the ccrrelation at any of the neighbor nodes. If Z(0) > r, then

the input is classified as belonging to the class represented by t, . Classification of the input is now
complete and the next input vector can be classified.

f. If Z(O) < r, we recognize v, as a local maxima of the graph. In the case of construction of the

graph, we examine all nodes, using backtracking or perturbations (to new graph areas or to prior
nodes with a high Z, i.e. perturb or jump by backtracking). We now briefly discuss thrce
techniquesg to avoid being trapped in a local maxima. They generally apply to use of the graph,
rather than construction of it.
Back-trackin' This involve" going 1-,ack to a previous node and taking an alternative rou'e. This
technique can avoid searches for poor solutions.
Perturbation: This technique permits random jumps to unsearched nodes of the graph.



Simula..e. annealing: This is a non-deterministic searching process which allows "downhill" ratl,.r
than uphill" moves to occur with a small (but finite) probability, depending on the ratio of the

. vector's correlation with t, and each of the neighbors of t

in operation, we prefer (in order of preference) to: (1) jump to the next largest starting node (if its correlation is

close to that of initial node chosen), (2) jump to an alternate neighbor of a prior node, or (3) perturb to unexamined

areas of the graph.

These searching techniques in steps (a) to (f) continue until a match is found or until every node in the graph has

been searched. This procedure is much faster and easier than might appear. The number of steps required (and

hence the number of nodes searched) is O(!og,,L) and the memory is O(L). If the entire graph is searched and no

correlation exceeds r then a new node must be added to the tree. The procedure is outlined in Section 4.4.3.

4.4.3 Addition of a New Node

This step outlines how a graph can be modified to include a new class. A block diagraii of the procedure is

shown in Figure 3. Its steps follow.
1.

a. Increment L, the number of class ?s stored in the graph, by one. If L ," L, a., reorganize the graph

as in Section 1.4.4. If not, proceed as below.
b. Store x' in sL  This is the data vector for the new class, which will be represented by t L in the

graph.

c. Add Al outgoing arcs from vL . If Z(i) is the J-th highest element (1 < j< A!) in Z, then set

C(L.j) Z(i) and t'(L,j>=i and increment 1(i) by one. This establishes arcs emanating from ,L to

its A! closest neighbors as set by R . These new neighibors will be referred to a.s forward neighbors.

This establishes the outdegree of vL as rnin(L,Af).

d Establish ingoing arcs to t'L' This step requires certain precautions to maintain connectivity and

reachability. We require that every node have a non-zero indegree. This implies that the sole

ingoing arc to some node t. cannot be broken to establish an arc to t, unless v in turn has t. as a
SC C

forward neighbor, re-establishing connectivity to v'. This will force the graph to be connected.

while also preventing subgraphs. We achieve this in an ordered manner as follows.

i. Check all previous nodes to see if an arc should connect any of them to v'L' i.e. if vL correlates

well with a prior node (better than some prior arc), To retain the graph's symmetry, this

requires that Z(0) .. C(i.A ' for some v. To guarantee con.-ectivitv t,. must still be reachable

from 'L without the arc v - rK(...)' (i.e. another way must exist to reach the node whose

ingoing arc ws, broken from V). lReachability is found using a modified A matrix where

ii. If step i returns a positive result for some t'i, the arc connecting vi to tK(0,M) can be broken

and replaced with one connecting v. to v , The reachable extent of t, and the connectivity of

the graph will not be adversely affected. C(i,A) and K(i,AI) are changed to Z(i) and i.

respectively. The i-th row of C and K is now sorted to accommodate the new data. This

step is repeated for all t which apply

iii. If no ingoing arcs to 1L are formed using the above steps, meaning that 1(L) =0. we must still

force a connection. This is most conveniently done by breaking an arc from some other node

that also has an ingoing arc to a forward neighbor of tL. The: forward neighbor with the

highest correlation is the best choice. The arc is then reconnected to tile new node 1 as

outlined in step ii. This will maintain the graph's coniectivity at the cxpca- of potential

small drops in the graph's classification space when searching for particular classes.

e. The reachable extent of uL is stored in the L-th row of E. It is equal to the union of the set of the

neighbors of v L with the set of all nodes reachable from those neighbors. This means it is unity in

any column j . here I'(L.j) -I or F)I\(L.k),)J for any k-. L.



4 4.4 Reorganization of the Graph

If L exceeds L,.,, the graph has outgrown the algorithm. The threshold r must be lowered so that new classe .

are not encountered as frequently and such that old prior classes can be merged. The following procedure lowers- L
by one node, merging several prior nodes and reorganizing the graph, while still retaining the graph's connectedriess
It can be used repetitively until L < Lmaz:

1.

a. r should be lowered so that it is equal to the highest value of the first column of C.
b. Merge the node v., which satisfies C(i,1)=r, with node vK(,. 1 ). The data vectors of these two nodes

can be averaged together to create a new discriminant vector representative of the two merged
classes.

c. All arcs to t, and tK(i,1) are broken and .eplaced by arcs to other existing nodes. This step is

equivalent to removing the i-th and K(i,1)-th columns of both A and R. This could potentially
effect the connectivity of the graph. If this occurs, the replacement arcs shoulH be chosen so that
the connectivity is re-established.

d. The indegrees of all the forward neighbors of v, and vKii) are reduced by one. This removes the

i-th and K(i,l)--th columns of C' and K. At this point, both t, and vK(il) are removed from the

graph.
e. The merged node is now added to the graph using the procedure outlined in Section 4.4.3.

4.4.5 Multiple Initial Starting Nodes and Meta-Vertices

To improve the connectivity and reachability of all nodes in the graph, meta-vertices can be established. These
vertices are not class nodes, but are used to connect subgraphs (isolated from the graph). These nodes slow
processing and search time and are avoided in our graph synthesis algorithm. We mention them as a possibility for
severe cases.

At the initial input to the graph, we enter the graph at A points (since we have Mt processors. we use them at all
levels, i.e. at the initial level also). For this case, meta-vertices are useable (or other key or parent vertices) as some
of the initial choices for the .\ starting initial nodes.

5. OPTICAL IMPLEMENTATION

Optical architectures are very appealing for this algorithm since they can ea sily perform the feature extraction

and required correlation operations in parallel. One architecture to achieve the .M correlations (or VIPs required per
node) in parallel is shown in Figure 4. In this figure. the preprocessed input data vector x' is applied to a single-

channel acousto-optic (AO) cell. The cylindrical lens Li vertically replicates the data vector across the correlatioi,

plane where a spatial light modulator (SL.M). such a.s a multi-cliannel AO cell, is placed. The spatial light modulator
contains one data vector on each of its rows. The projection of x' onto each of the.,e rows produces the point-by-point
product of every component of x' with the corresponding components of the data vectors stored in the SLl

Another cylindrical lens (L2) sums these products across each row, producing the vector inner product (VIP) of x'
with each data vector stored in the SLM. L2 focuses the correlation results on a linear detector array. where they

are fed to an external controller.

The controller is responsible for loading the SlI,. with the necessary data vectors to traverse the directed graph
It initially loads the SLM with the starting vertices of the graph. It then detects the highest output and assigns v a-

that node. The neighbors of that node are loaded into the SLM, and the process continues until he input I-

classified as either an existing class or a new class which must be accoiuunod it .] in the graph. Other optical
architectures (such as ones with input point modulators, a one-channel AO cell. nnd N 1-I) time integrating detector

arrays are also viable alternatives). Variations of each system to allowI high-accuracy encoded data processing ar'.
also possible. In Figure .I, one would input an encoded description of each element. pirform a high-accuray
multiplication (by convolution), and continue for the next vector element.

, ,, -,,nn nmnnmnmm mmnm nmln~~~nl• M mmMM li
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Figure 4: Example Architecture for an Optical Directed Graph Classifier

The hybrid architecture of Figure 4 and its variations use the best of two different technologies: optics is used to
handle the heavy computational burden, while digital memory provides the storage of the data vectors and the
graph's A, C and K matrices. Such a system is suitable for very large classification problems as we now quantify.

The key component of this system is obviously the SLM. As shown, maximum classification speed for a parallel
directed graph classifier is obtained when Ml is set equal to the number of correlations which can be performed
concurrently. Therefore, Al is set by the number of data vectors which can be stored in the SLM. For example,
consider a 16-channel AO cell as the SLM, with digital hardware capable of loading the cell at a 16 Mbps rate (1
Mbps per AO channel). This would allow Af=16. A 50-long vector with 8-bit resolution for each vector component
could thus be passed through each cell in 0.4ms. This will be the time T required to perform the parallel
correlations. The controller synchronizes the SLM data with the input data. Since T is greater than the propagation
time through the multi-channel AO cell, the system performs time integration in T=0.4ms per node searched.
Assuming a total of 212 classes (L=4.096). the average time for classification would then be O(T log m L)=l .2ms.

Here we see that the penalty for back-tracking is the addition of T (a 30c increse) for each back-tracked step. The
digital memory requirement for this example is approximately 0.5 Mbits.

Another alternative is a liquid crystal SLM, which presently offer resolution of about 100X 100 at video rates (30
Hfz) with 32 grey levels (5 bits/pixel). The processing time T per node is now 33ms, which yields a much slower
classification time than the multi-channel AO cell case. Projections have been made for improvements in all of these
figures, notably an increase in its frame rate to 1 ktIz. Such improvements would be necessary to make liquid crystal
SLMs feasible for such a system.

0. DIRECTED GRAPH CASE STUDY

The algorithm was tested using standard 5X9 dot-matrix alphanumeric characters in 62 classes ('A through 'Z',
'a' through 'z', and '0' through '9'). Samples of the characters are shown in Figure 5. Each character was described
by a 64-element binary vector, which was obtained by taking each row of the character and making that the next
five elements of the data vector. The remainder of the vector was zero-padded. The number of forward neighbor
for any node was chosen to be M-4. The graph was built one class at a time, using a threshold r of 0.99.

Figure 6a illustrates the initial 5 class graph and the resulting graph when th, .i-th node ('F') was added to the
five-node classifier. This was done by first adding outgoing arcs from 'F', then i, determining what arcs should be
broken to make ingoing arcs to 'F'. First outgoing arcs were made from 'F' to the four nearest neighbors which had
the highest correlations with 'F' (in this case 'A', 'B', 'D', and 'E'). Next, ingoing arcs to F' were established by
checking each of the five previous nodes to see if 'F' correlated better than a given node's lowest correlation

neighbor. If this was the case for some node and if its lowest neighbor wa.s ea,'hable from 'F', then that arc wa-'



Figure 5: Standard 5X9 Dot-Matrix Alphanumeric Characters

(a) the five-class graph 'A' through 'E' (b) the six-class graph 'A' through F'

Figure 6: The Addition of Node 'F' to the Five-Class Graph ('A through 'E')

Figure 7: Meta-Vertices Masks used (Number of Pixels Per Quadrant) for Initial Input Node Tests



Table 1: Directed Graph for a Character Data Base

ABCDEFGHI JKILXNOPQRSTUVWXYZbcdefgh1 jklmnopqrustuvwxyzO1234M6780
(A] B H P R
(BI A H PR
c] G 0 a88
[DI 0 Q U u
(EI FG L P

IF] AB E K
(G) CE 0 0
CHI AB b
[I] C T 78
(a) 234 7
[K) H LM R
ILI DE U b
[N] H N W h
IN] u wxk

[03 C G Q 0
P AB F R

[Q] D 0 u 0
[RI A F P x
(S] C 8o
(T] I Y
[U) 0 w b d
(V] H P U Y
(WI H N U
[x] H N Y k
(Y) T VWX
[ZI E 0 57
(a] de o s
[bi c h n 5
cc] b de 0
Ed] U ab q
[el a c o 8
IfIA m n5
Eg) d o q y
(hi N b n r
(I I 1 s 1
[jI fg q y
[k] H N X h
[i] I T 1
[a] b h n r
In) b h m r
1o bcde
Ep] b no r
Eq] d g u y
[r] h mn p
Es] e o t
It] p s z s
u U g q v

Ev] D u w y
Ew) 0 U w u
Ex) B H R z
[y] g 1 q u
Ez] a s 2
[o) C 0 Q
Il I T
[2) QR z 8
E3) C S 58

(4] a e
ES) G 0 b 3
E61 E G s
[71 T Z 0
(8) 0 s 0 8
E) A Q s 8



broken and replaced with an arc to 'F' (Figure 6b). Table I shows the adjacency matrix A (with its elements noted)
for the actual graph obtained. Each row of the matrix shows the neighbors for the particular character in the left
margin.

A meta-vertex was used at the starting node. It consisted of the four masks shown in Figure 7, which simply
counted the number of monN pixels in each quadrant. For this problem the optimum number of nodes to be
examined (on the average) for classification is (16X2+(62-16)X3)/62=2.74, where examining a node refers to
examination of its M=4 nearest neighbors. This value is simply the average of the path lengths given an "optimal"
graph. The actual value obtained in tests on these data was 5.27, yielding the graph efficiency -t-0.52. While the
efficiency may seem low for this particular example, one should remember that -y reflects the interconnectedness in
the graph, which is achieved at the expense of some classification speed. More research is required to determine the
effects of various system parameters on -y. Without the input initial meta-vertices, performance was much worse (an
average of about 8.5 nodes per search).

7. CONCLUSIONS

An algorithm has been presented to model a large-class problem or large knowledge base as a directed graph
classifier. It is shown that the classification procedure can yield the object class quite well. The proposed algorithm
can also be used to iteratively synthesize the graph one class at a time, while maintaining the graph to be connected
and all classes reachable. Our algorithm allows the classifier to easily accommodate new classes, and it is especially
suitable for parallel processing architectures, such as optical systems. Initial results were most promising. This
concept appears to have use in many new optical Al concepts.
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Rule-based symbolic processor for object recognition

David Casasent and Abhijit Mahalanobis

The application of svinhoic prce .ing and rule based methods for target reci gnit i1 l sing correlation filters
V. is considered. The concept of partitioning images is introduced, and its advantages are described. Tech

niques for rule development, symbolic substitution, error correction via associative processing, and (n-line

filter adaptation are advanced. Initial simulation results are alsi presented and discu~sed,

I. Introductlon basis of those parts which are visible in the input
A. Bcimage.A. Background A category of objects such as tanks is more difficult

The use of spatial filters for the automatic recogni- to model because the number of variations in struc-
tion of targets has been widely studied. Typically, ture, shape, and size is very large. Computer pro-
such filters are synthesized to recognize complete ob- grams for modeling tanks exist' but result in very
jects. In this paper, we address the possibility of iden- specific models for each tank. It is difficult to obtain
tifying targets by parts (i.e., by partitioning the input images for individual tank parts from computer mod-
image), and by symbolically analyzing the partitions els and thus correlation filters synthesized from tank
simultaneously. parts are not easy to assemble. In this paper, we

The fundamental idea is to generate a symbolic de- propose an alternative scheme based on spatially par-
scriptiun of the input image using spatial filters (also titioning training set images hat serves the same pur-
referred to as correlation filters).' Separate filters are pose of recognition by parts for more complicated ob-
synthesized for different spatial regions of the compos- jects such as tanks.
ite set of training images. A composite filter of all
objects (with the spatial relationship between seg- B. Practical Motivation
ments preserved) is formed. It is then correlated with As stated in Sec. I.A, it is conventional to synthesize
the input to obtain a symbolic or multibit code descrip- distortion-invariant linear combination correlation fil-
tion of the input object. The K-tuple synthetic dis- ters from complete training images. However, prob-
criminant function (SDF) investigated in previous re- lems may arise when parts of the object are absent or
search2 also yields a multibit output code. However invisible either due to occlusion by artifacts in its
the prior K-tuple SDF differs from the scheme pro- natural environment (such as foliage, terrain, camou-
posed in this paper in one important aspect. Unlikz flage measures), noise in the input, temperature varia-
the correlation filters employed for symbolic process- tions when an infrared imaging sensor is used, sensor
ing, the prior K-tuple filter systems are synthesized malfunction, and a host of other possible reasons. In
from entire training images. The advantages of our situations where the entire target is not visible, it is
new proposed scheme will be discussed shortly. preferable to identify its observable parts and from

Some relatively simple 3-D objects such as aircraft these logically deduce its class. Analogously, one can
can be numerically modeled on a computer. 3 Most determine the more reliable parts of the object and
aircraft are a collection of generic parts whose dimen- give them more weight than other parts. Our pro-
sions differ from model to model. Computer algo- posed svrnbolic processnr is moti-ated by this set of
rithms can efficiently generate the images of most practical considerations.
aircraft parts and combine them to produce realistic The inference of object class from a study of the
images of existing civilian and military aircraft. This visible object parts requires "abductive reasoning." I
is possible mainly because the number of aircraft parts Formally speaking, abductive reasoning involves the
is small, because aircraft haveaconsistent set of gener- establishment of pertinent facts to infer a new fact.
ic parts and because they can be modeled by simple Since more than one answer is often possible, abduc-
geometric shapes such as cones, cylinders, and planes. tive reasoning must also yield which answer is the best.
Hence correlation filters can be synthesized for various To make decisions of this nature, we must weigh the
aircraft parts, and the target class be identified on the available evidence. To do this, we must know how

strongly a fact weighs for or against a conclusion, and
The authors are with Carnegie Mellon I Iniversitv. Department of how to combine the pieces of evidence into a final

Electrical & Computer Engineering, Center for Excellence in Opti conclusion. To gain evidence, it is necessary to obtain
cal Data Processing. Pittsburgh. Pennsylvania 15213. prior and conditional (a posteriori) probabilities. A

Received 27 March 1987. technique to achieve this will be discussed in futher
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application program for performing tasks which re- Tabe I. Terma and DWlInlIlons to Filter Synthesla
quire expertise. While there is no necessary connec- Derm Iefinition Value
tion betw., expert systems and abductive reasoning, dimension
most expert systems perform abductive tasks. Con- d 1-1) Image :dimension 2"k 1-I) Partition dimension
versely, most of the standard examples of programs M Number of partitions 16
which do abductive reasoning in the presence of uncer- N Total numher of training images 12
tainty are expert systems. With these considerations,
we can refer to the proposed rule-based scheme as an At -k' = d-
expert system. We use the symbol wij to denote the ith subimage of the

The definition of the problem is given in Sec. II, and jth training inage. 'T herefore 1 5 i -< M and 1 < j -< N.
the concept ')f dividing an image into partitions is The terms partition and subimage will be interchange-
explained there. The various considerations for corre- ably used in this discussion.
lation filter synthesis (i.e., their size, number, output We propose that correlation filters fi be synthesized
assignments, and training sets) are discussed in Sec. for each partition, 1 < i _< M. The filters fi are as-
III. A statistical motivation for the proposed scheme sumed to he functions of the training subimages w, (for
is advanced in Sec. lV along with illustrative examples, all j) and to be of dimensions k X k. The correlation
Section V is a description of the rule-based symbolic filter synthesis procedure is not important for the dis-
processor, and how expertise and evidence are incorpo- cussion in this paper. We use minimum average corre-
rated into the program. Initial test results are report- lation energy (MACE) 6 filters in our work because of
ed in Sec. VI. A summary of the paper is given in Sec. their time and memory efficient synthesis, .id Jhcir

VII. ability to form good correlation peaks.

II. Problem Definition IIM. Criteria for Filter Synthesis
We wish to design a system capable of identifying, In this section, we discuss relevant synthesis criteria

recognizing and classifying objects in the face of 3-D such as the designation of filter outputs and the selec-
distortions. Our case study is confined to a tank and tion of training sets for the filters. The proposed
an armored personnel carrier (APC). However, the scheme is best described by means of the diagram in
basic concept has far more generality. The filter is Fig. 1.
intended to achieve aspect-invariant distortion invari- We use siit es, partitiois (M = 16) in our work. The
ance. To provide this, we employ training images (of outputs from the corresponding sixteen filters are col-
the target objects at several different aspect views) as lectively denoted by the 16-element output vector v.
detailed elsewhere.' We partition these input train- The layout is shown in Fig. 1. The image is divided
ing images into several subimages, and synthesize cor- into sixteen subimages, each of which is a partition.
relation filters for each partition. The goal is to use The partitions are numbered from I to 16 as in Fig. 1.
correlation filters to generate a multibit multiple filter The training set of the filter fi (1 -< i 5 16), correspond-
description (or symbolic code) for each object for dis- ing to the ith partition is simplythe collection of the ith
tortion and shift-invariant symbolic object classifica- subimages in all complete images in the data base.
tion. The training set for the ith filter is represented by ,=

Once representative images of each object have been lwi1 = 1 .... b N.
selected for training the correlation filters, these train- The data base chosen for our work consists of six
ing set images are partitioned into M k X k pixel completeimagesofthetankandsiximagesoftheAPC.
subimages or partitions. We assume an input object The images were taken at a depression angle of 60' and
resolution of d X d pixels. Thus, were evenly spaced every 60* about the normal. Since

there were six images per class, the training set 4, for
each filter fi included 2 X 6 = 12 subimages wj, 1 5 j _<
24. The data base images were 32 X 32 pixels (i.e., d
32). Since M = 16, we select k = 8 to satisfy Eq. (1).
The four synthesis parameter values for d, k, M, and N
are listed in Table I. The entire data base contains
seventy-two images, thirty-six of the tank and thirty-

2 isix of the APC, each image being a different aspect
S, view with 100 increments in aspect angle used.

/ The desired filter outputs must also be specified for
both classes of data. Two choices for the filter outputs
are shown'in Figs. 2(a) and (b). These were used for
the tank and the APC, respectively. The value (1 or 0)
in each square in the correlation output represents the
output of the corresponding partition of the filter.
Thus, as seen in Fig. 2(a), the sixteen filters f, yield an
output of 1 for odd val-. J c ind 0 vtivrwise), when

Fig 1. Partitioning scheme for tomplete images, the input image is a tank. This output vector for the

4796 APPLIED OPTICS / Vol. 26, No. 22 / 15 November 1987

I



I1I 01 1 0 I Consider a single correlation filter employed for tar-

-t- - .. get recognition. When the correct object is present at
I_ 0 1 0I the input, the output correlation peak is at a user-

1 0 1 I 0 I specified value. This is true provided the filter is
distortion invariant (one approach to this is to make

1 0 1 0the proper choice of the training set images). The
a value of the output peak determineb the class of the

input image. Unfortunately, it caxi be show;, thai an
infinite number of images exist that yield correlation

0 1 1 1 0 1 1 1 peak outputs exactly equal to those specified during
- i -1 filter synthesis by the user. Thus, even in the absence

I I 1 1 of any target, the filter may output correlation values

10 I 1 0 I 1 I equal to or close to those specified for targets and

l 110 11 thereby give rise to false alarms. Decisions based on a
single filter are hence unreliable. In formal terms, the

b constraints imposed during filter synthesis are neces-

frig. W. artctioned output pattern fr tank; Ih) partitioned sary but not sufficient for target recognition.
output pattern for an Al'C. It can be shown that the simultaneous use of more

than one filter reduces the false alarm rate. The si-
multaneous use of muLipie filters (such as the K-tuple

tank is denoted by vl, which is obtained by lexico- SDF) has been suggested in previous research (al-
graphically ordering the elements of Fig. 2(a). Simi- though not for these specific reasons). Our present
larly, Fig. 2(b) shows the desired outputs for an APC scheme based on partitioned images achieves a lower

input. The corresponding output vector is denoted by false alarm rate because more constraints have to be

v,. If the filter outputs are set to be v, or v,, for each satisfied simultaneously. As stated earlier, we do not

target class for all images in the data base, the output provide a detailed analysis in this paper. However, we

vectors vt and v, are invariant to 3-D distortions of the now offer intuitive insight into the problem and its

tqrzpge t c . During filter synthesis, we solution.

specify that the training set objects have these tw'o In the following, we shall represent a d-dimensional
output patterns. Thus, we achieve a unique 16-bit vector space S and its subsets S, by plane figures as in
symbolic correlation output description for each input Fig. 3. The plane S represents the whole set of possi-

object. ble images that could ever appear at the input of the

The Fourier transform of the filter f (with A = 16 correlator. Assume that a filter fI is synthesized such
outputs as shown in Fig. 2 in the space domain) is that an output of u, is obtained whenever the target is
synthesized as a matched spatial filter in the frequency present at the input. Since images other than the
domain of a frequency plane correlator. 7 This pro- target exist that yield an output uI, we denote the
duces one filter with each of its M = 16 partitions on a subspace of all such images by the region S 1. Thus all
different spatial frequency carrier (with frequency images inside S, are potential sources of false alarms
proportional to the subimage's location in the filter). with the filter fl. Now assume that we employ M
The correlation output for such a filter yields a 4 X 4 filters f,, 1 < i < M. For each filter f,, there exists a
array of correlation values (a 16-bit symbol) for each subspace of images S, (similar to SI) that yield false
occurrenceofatankorAPCintheinput. Thesymbol- alarms. All images in S, thus satisfy the constraints
ic pattern of Fig. 2(a) will result when the input is a imposed on the filter f, during synthesis. The M sub-
tank and the pattern in Fig. 2(b) will result when the spaces S, for the M filters are shown in Fig. 4. By
input is an APC. The spatial location of the pattern definition, all these subspaces must contain the train-
denotes the object's position in the input image plane. ing set images, and hence must have a nonzero inter-
Thus, one uses such a correlator in the conventional section I. Moreover, an image must belong to this
manner but searches the correlation plane for specific intersection to simultaneously satisfy all M filters.
4 X 4 symbolic patterns, descriptive of different ob- For a multifilter system, a false alarm is said to occur if,
jects. in the absence of a target, all M filters output correct

correlation values. Therefore for a false alarm to oc-
IV. Statistical Motivation cur with multiple filters, the input must yield M cor-

A statistical motivation for the proposed scheme
may be gained from the following considerations. -1
Typically, the pattern recognition schemes that use 1 2 31 41
correlation filters have a high false alarm rate. The I 1- 1
problem of false alarms has not been addressed fully A 1 1 - l'-  I

and is an important topic for future research. In this 10 It I 12 1

paper, we briefly describe a potential solution to the I l ,.,4 [1511 j
problem, but will defer the details of the analysis to a Fig. :i I)omin S,1 I 1 t, f :lari ii '., in the space S oflall iniages

future publication. ( ,,r the c - ,I a single ilter).
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rect outputs simultaneously. Orly images in the in- image is a tank given the observation v where T is a
tersection region I.ave this property (since images in I threshold value). A purely statistical solution to the
by definition yield correct outputs for f1 ,f2 . fMf). problem would be to obtain estimates for P(Iv > T)
Thus images that cause false alarms with M filters and to use Bayes rule" to obtain an estimate for
must belong to the intersection set I. From Fig. 4 it is P(Tank/Jv > T), assuming a priori probabilities for
evident that the number of false alarms is less for M P(Tank). However, it is generally difficult to obtain
filters (than for any single f,) since the intersection I is all the necessary estimates for P(Ivl > 7, because of
smaller than any of the individual subspaces S,. the large number of possibilities. Thus we resort to
Moreover, the intersection becomes smaller as the abductive reasoning to provide a solution.
number of filters (and hence the number of subspaces Given a measured output vector v, the system deter-
that must intersect) increases, indicating a diminish- mines a limited number of ways in which the observa-
ing false alarm rate for a larger number of image parti- tion could have resulted from image distortions, miss-
tions. ing parts, etc., and the probability associated with

The information in Fig. 4 can be interpreted in terms each. The system then uses abductive reasoning to
of the probability of false alarms. It can be shown, in determine possible output filter element errors. Once
rather general conditions, that a system using filters a filter output is suspected of error, its symbolic value
synthesized from complete images (without partition- is altered to test for better matches with the descrip-
ing the data) has a higher probability of false alarm tions stored in memory. During system test runs, we
than a system employing multiple filters. The sym- develop an a priori belief in specific filter outputs by
bolic and associative postprocessing we perform allows observing that some filter outputs are in error less
flexibility in assigning objects to a class when the inter- frequently than others. In operation the system is
section region I in Fig. 4 becomes too small for a given then instructed to examine these more reliable filter
get of data. outputs in certain conditions and to ignore other sym-

bolic outputs. The decisions made in such conditions
V. Probabilistic Rule-Based Recognition (i.e., ignoring certain symbols) are assigned & 1,wer

In this section, we describe criteria for basic rule confidence. We now detail these techniques.
formulation for the recognition of targets using the
output symbolic vectors v,,. Guidelines are provided A. Rule Formation Introduction
for incorporating new rules into the system, via inter- Target recognition is a trivial task if the input image
active exchange of information. The criteria for as- is represented ii- the data base. In this case, the out-
signing confidence measures (probabilities) to each put vector is expected to exactly match the 16-bit
decision are also discussed. patterns in Fig. 2(a) or (b). We will refer to the proper

We wish to determine the conditional probability P output vector (v1 or v2 ) simply as the output vector v.
(Tanklv > 7) (i.e., the probability that the input A simple rule for target recognition in this case is:

Rule 1:
(1) Assign the symbol A to the symbolic outputs

/ that are 1, and t ie symbol B to outputs that are 0.
/ . (2) If elements (1,5,9,13) and (3,7,11,15) of v are A

S and elements (2,6,10,14) and (4,8,12,16) are B. the
input is a tank with confidence = 1.0.
(3) Else, if the complement of 2 is true, the input is
an APC with confidence = 1.0.

/ (4) Else, set error flag (1) and confidence = 0.0.
/ End rulel1.

, 71 This rule operates on the output vector v. We treat
the outputs 1 and 0 as symbolic values and assign them

I), - the symbols A and B. The complement rule4 in step
(3) evaluates the complement of the rule in step (2). If
v does not satisfy the rule, this is a procedure error and
the flag in step (4) is used to record this fact. Sec. V.C
provides further rules and how they are learned.

B. Multiple Filter Banks

In a real environment, it is unlikely that input im-
ages will perfectly match any image in the data bqse,
since input images can be distorted by 3-D rotations of
the target or by occlusion of target parts by natural and
man-made artifacts. Our processor adapts to such
situations as we now describe.

li, I I,,ter. ( ,,,n I (it ,nitiii , ,ili, r ,I, ,,miTs S, fir the c.,e ,, To improve the decision making process, we employ
z1h1t ipIV Iillvr, a set of S symbolic filters (with AM partitions in each).
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We refer to the set of filters as a filter bank. We thus 0 o 0
perform the correlation of the input data with S filters. Io I I--- TO I )
For a single input object, there will be S output correla- 0 o1 __- I - I
tion planes and each will contain an Af element output I _ )I0-_
vector v, (the symbolic pattern chosen). - -

Figure 5 shows a correlator with S = 4 multiple d
correlation planes at FP: that are the correlation of the Fig 7. 'art itined ,utput patterns for (a) tanks and (b) AP's fr,,m
P, data with S = 4 different spatially multiplexed filter 2. and for (c) tanks and td I AI'Cs from filter 3.
filters at P. The holographic optical element (HOE)
L1 provides a spatial replication of the Fourier trans- ideal symbolic patterns contain ones and zeros, the
form of the P, data at four separate locations in P2. actual filter outputs are values between 0 and 1 (partial
Four space-multiplexed filters with HOE Fourier truth).
transform lenses are used at P2 . One can also achieve The program first attempts to classify the output
multiple correlations using frequency-multiplexed fil- vectors using rule 1 (Sec. V.A) applied to all three
ters at P2 as shown in Fig. 6. In both architectures, vectors v,,, v,_, and v,. For a decision to be made, all
each correlation plane contains a 4 X 4 spatial pattern three output vectors must satisfy rule 1. If a decision
(the symbolic code chosen, such as those in Fig. 2) at is not possible, it is assumed that errors have occurred
spatial locations corresponding to each occurrence of in the vectors that failed rule 1. The user is interrogat-
one of the objects in the P, data. ed for the class of the input image. The three output

In our initial symbolic processor tests, we used S = 3 vectors and the user's choice for object class are stored.
filter banks with M = 16 filters in each. Each object is The program proceeds in this manner until this infor-
thus described by three vectors v,, v,, v, with a total mation has been obtained on all seventy-two images.
of 3 x 16 = 48 elements. Figure 6 shows the second After storing the three output vectors and the user-
output vectors (v,.,,1) and (v,,,2) for the class 1 and 2 specified class for all test images, the program interro-
objects and the third output vectors (v,l) and (v,,,2) gates the user for the number of rules that should be
chosen. Each vector pair is a vector and its comple- used for decision making. An iterative search' 0 is then
ment. The advantage of using a filter bank is that an initiated to find these rules, such that the number of
error in one output vector can be confirmed (or invali- errors obtained using each rule is as small as possible.
dated) using the remaining S - 1 output vectors. We We now detail this procedure.
now describe how rules were developed interactively to To illustrate this procedure, consider the tank im-
achieve this. ages as inputs. It is found that for thirty of the thirty-

six tank images (i.e., all nontraining set images), the
C. Interactive Knowledge Acquisition fourth element of vector v,, is in error [i.e., it should be

In each object class, thirty-six images (at 10* aspect 0 as shown in Fig. 2(a), but was 11. It is also found that
increments) exist. The filters f, for the various filter for the same thirty test images, the seventh and eighth
banks were formed from six images/class (at 600 incre- elements of v,, and the twelfth element of v, are in
ments in aspect), i.e., using twelve of the seventy-two error. Therefore a possible second rule is:
possible images in the 2 classes (tank and APC). The Rule 2: failing rule 1 then
three filter banks were formed and encoded as in Figs. (1) If all elements of v, match except for element (4)
2 and 7. The three filter output vectors v,, to v,, and v, matches except for elements (7,8) and v,
obtained were measured and stored. Although the matches except for element (12), the input is a tank
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with probability = 0.86 (confidence = 0.79). Table 11. Confidence Values to, a Fe-Rule System

(2) Else: if the complement (of step 1) is true, the Nin .,,
input is an APC with probability = 0.80 (confidence , I.gn','tn re,
= 0.73). W{tile number (la , ('nfidence ,It d 4S

(3) Else, set error flag (2) and confidence = 0.0. 1 'Fani k I
End rule 2. Fa Tank ()79 .9
Using this rule, it was found that thirty-one out of 3 Tank .-t; 

the thirty-six tank images satisfied the match require- . Tnk C2

ments, and hence were correctly identified (while none AP" C I
of the APC test images satisfied the rule). Thus the A I'C o 73
probability that an image that satisfies rule 2 is a tank 3( Af' 0 69

is 31/36 = 0.86. This is how the probability values 4( APC 063 Vi

noted in steps (1) and (2) in rule 2 were obtained. If ., APC (1I 17

the match technique fails for the tank, the complemen- particular rule, the condition for failure is set.
tary rule is evaluated for APCs as in step (2). It was Using rule 1 before rule 2 establishes a hierarchy for
found that twenty-nine APCs satisfied the comple- rule usage. If an image is found to satisfy rule 1, it is
mentary rule, and thus the probability for APCs is easily classified as either a tank or an APC. However,
estimated to be 29/36 - 0.80 as noted in step (2). most images may not satisfy rule 1, and rule 2 must be

It is necessary to distinguish between confidence applied as a second test. This rule is estimated to be
and probability measures. As the number of the rule correct 86% of the time for tanks and 80% of the time
used increases, more and more vector elements are for the APCs. This percentage probability that the
ignored. Since fewer symbols are taken into consider- rule is satisfied is then used in Eq. (2) to obtain a
ation, the confidence in higher rule must be lower, confidence measure. All images satisfying rule 1 will
However, the probability that higher rules are satisfied satisfy rule 2 also. The purpose of the interactive
is larger, because fewer vector elements are used for procedure leading to our five rules is to determiine the
making a decision. Thus we need to compensate by most reliable symbols and the probabilities and confi-
including the number of elements examined in the dence of the class estimates foreach rule. Thisgeneral
expression for the confidence. This is easily done by technique to obtain the rules to be used reslt.-s in a
setting final set of rules that is a decision tree. The technique

",,,r - t hmeitn examined used to select the symbols used at successive levels is
C,ntidence = 1r,hahilt X t,,tal ntmbero. element, general and can be applied to many problems. It is not

domain specific. The specific rules that result will
For rule 1. we use a confidence of 1.0, since if it is differ for each data set. Thus the method adapts to
satisfied, we have perfect confidence (ignoring the pos- different knowledge sources.
sibility of false alarms) in the class estimate it gave. We now discuss rules that use the information in one
For rule 2, the confidence from (2) is 0.86(44/48) = 0.79 out put vector to rectify errors in the others using a new
and 0.80(44i48 = 0.73 for the tanks and the APCs, symbolic substitution rule. For example, suppose
respectively. Thus for low numbered rules (using that the fourth element of the vector v, is in error for a
more of the vector elements), the confidence is approx- particular input image. The program assumes that
imately equal to the probability that the rule is satis- the part of the image in the fourth partition is missing,
fied (since the number of symbols used for decision or is severely distorted. Therefore, it assumes that the
making is close to the total number of symbols). How- fourth elements of vectors v, and v,, are also in error
ever, for higher numbered rules, the confidence is a (since the replicas of the same image are input to all
fraction of the probability, reflecting the fact that filter banks). This rule module then alters the fourth
some information was ignored in making the decision. elements of v, and v , , and checks to see if use of the
We used fivp rules. The data for these are provided in original or altered v,_ and v, vectors yields a better
Table II for rules 1-5 and their complements lc-5c. match. Both possibilities are considered, since if the
The confidence of each rule decreases as expected and proper element value is 0, it may not be altered, where-
the number of symbolic elements (out of forty-eight) as if its proper value were 1, it may be altered; or vice
ignored increases as shown. versa, depending on the nature of the difference in the

The procedure failing rule noted at the start of rule 2 corresponding region of the input. If altering the out-
checks the error table to see if a given rule was violated put vectors in this, manner provides a better match, the
by the output vectors. This is required for determin- assumption that a part of the image is distorted Or
ing branch and termination conditions and is particu- missing is validated. The input image is then classi-
larly useful in programs with intricate feedback routes. fled appropriately. In principle, this symbolic substi-
Since our rules have a precedence hierarchy, the proce- tution can be applied to more than one element of the
dure failing rule is not absolutely necessary for our output vectors. This rule module would be applied to
present program execution. Ilnwevet, we included it each rule and then (if no match is obtained) the next
to accommodate the future development of the pro- rule would be accessed. A straightforward procedure
gram into a more complex rule-based algorithm. Note can be devised to identifv which elements oft he output
that if any one of the S output ve( tors does not satisfy a vectors may be in error, A major advantage of a rule-
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based recognition technique is the ability to anticipate cessor to fully correct the input vector, but for the
and correct errors before a decision is made.1"  combination of an associative processor and our rule-

The rules (see Table Ill with highest confidence are based symbolic processor to be used. Memory size
invoked first, since a later rule provides a lower confi- and performance studies will determine the best sym-
dence than the previous rule. We emphasize that the bolic vector dimensionality to be employed. The out-
process of rule generation is an off-line interaction put vector obtained from the associative processor we
between the programmer and the computer. Oncethe used is thresholded at 0.5 to obtain binary valued
set of rules is formulated, the program stores them in symbolic vector elements. These resulting vectors are
the memory for on-line access. The technique used then fed to our rule-based processor, which is then
for generating the rules attempts to maintain a hierar- checked for an improvement in the confidence of the
ch*v, such that images that satisfy rules with higher classestimate. An improvement is not always guaran-
confidence will also satisfy rules with lower confidence. teed since the associative processor can change correct
This occurs in the present case. In general, most im- symbols also as noted at the outset.
ages will satisfy more than one rule. The decision with
the highest vote of confidence is accepted as the best VI. Initial Test Resuits
choice for image classification. We now discuss the initial performance of our rule-

based symbolic processor. A bank of three filters was
D. Associative Memory formed with symbolic outputs for 2 classes as shown in

If the confidence of the lowest rule with a match is Figs. 2 and 7 from six images per class of aspect-
felt to be too small, the rule-based decision making is distorted tanks and APCs. A set of five rules for our
deemed to be unreliable. In our five-rule system, we rule-based system was produced. Rules 1 and 2 were
always have a confidence of at least 0.4S. However, presented earlier in Secs. V.A and V.C. Subsequent
this will not be sufficient in most cases. tise of rules rules were obtained similarly by noting which symbolic
beyond rule 3. where the confidence drops below 70"r, elements were generally in error. Table II summarizes
v,111 generaliy not result in atcepldAb performance. the confidence for each rule for each object class. The
In such situations, the program resorts to matching the confidence is obtained as detailed in Sec. V.C and it is
v. vectors to the closest ideal output set of vectors (by seen to decrease for subsequent rules. This is expect-
minimizing the norm of the difference between the two ed since, with fewer symbols used in subsequent rules,
vectors) This i-analhgi,,stothe informtion retriev- we expect lower confidences in the class estimates
al process in an associative memor\. "'hus. we call an produced. The rule, were then applied to the training
associative processor one that returns three \ectors set images, and loo"', correct results were obtained
closest to the computed vectors v ,v. . and v.. W,%e (with confidence 1.0) as expected (see Table 111). This
could use S separate associative processors (one for confirmed the proper synthesis of the symbolic filters.
each of the S output vectorsl to reduce crosstalk Or The system was then teste'i with five images per
interference between symbols. With only sixteen ele- class (onlv one (o these images per class was a training
ment vectors, there is considerable rosstalk. At image, the 0' view) with partitions 7 and 10 (see Fig. 1)
present. we employ one autoassociative pr-essor that of each image removed to simulate data occlusion and
handle, all six vectors (three per class object). to test the system's performance. Table IV shows the

The design of associative memory processors is dis- results. The first throe columns in Table IV give the
cussed elsewhere' : and is iot reviewed here. The aki- test number, the aspect view. and the type of object.
t,,ass dciative memory matrix is given by the Moore- The last three columns show the results obtained: the
Penrose generalized Inverse class estimate, the rule number which the object first

passed, and the confidence of the rule (and hence the
confidence of the class estimate). As seen, one error

where the six columns of the matrix X are the three v,, was obtained (for the class estimate in test 4). The
vectors for each class. The output vector that results confidenceof thisestinateislow (62%) and thus would
will be a minimum mean-square approximation to the be suspect. The remaining objects are correctly classi-
ideal data. While most errors in the input vector are fled with a confidence of at least 69%.
corrected by such associative processing, a few correct The error case in Table I, would be sensed by its low
symbol values may be altered (i.e., errors can be intro- confidence and thus the nssociative memory would be
duced by the associative processor) to achieve the used. For this case, the three distorted output vectors
minimum error value. The error correcting capability v,, v,., and v,, computed for this image were fed to an
of the associative processor depends on the size of the auto-cQcialive processor whose memory contained
vector space, and the number of vectors stored, and is the ideal vector patterns. The (utput obtained from
'eter for higher dimensional input vectors. In our the associative processor for each v-, input is a linear

case, the dimensionality of one input vector is 16, combination of the ideal stored vectors. This output
which is relatively low. Thus dramatic improvements was thresholded at 0.5 to obtain three new output
are not expected. We could employ the three vectors vectors. Our rule-based system was then again ap-
as one 48-element input vector and thereby improve plied to these new vectors. The resulting decision in
the performance of the associativp processor. Ilowev- this case was correct (i.e., the image in test 4 was now
er. our present purpose is not for the associative pro- identified as a tank) using rule : with a confidence of
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Table Ill. Resuilts of Tests Using the Twelve Training Set Tank and APC VII. Conclusion
___________________________Images __________ In this paper, v.e have ou.thled a ,Vlten) (-aplle (

AspectXiial I H 1  recognizing targets even when part., ()f the objec t are
Ternh r Idigi Act iaI eClllat niner rifliw ot visible. Motivation was provided for filtering by,

nurncr dc I I ss ltiliae Mlnfr (,,n idm v parts and an example was given to illustrate the possi .-
Ii ' ln k 'iank j)I ble advantages of synthesizing symbolic correlation

- ;( *i laniik I nk I i' filters formed from subimages (if objects. A systemn
1 2ol Tank tFan T i k

4 1iSO Ta nk Ta iI Ik was devised and simulated for demonstration pur-
.1 24(1 Trijik 'tank I poses. Initial simulation results were encouraging and

6 3(ot TIank 'lank 0 demonstrated 3-D distorted object recognition with
7 .I 1C A PC 1I 1Il0 occluded object parts. We also showed that an asso-

5 6JI A PC A PC' 1 11 ciative processor can be used in conjunction with the

Ii 0 I1SO A PC A. Ir C rule-based system to improve performance. We de-
1 24 0 Ax' PC I' A PC tailed how the system's rules are developed via off-line

12 3i00 All(' AIPC I I o interactions between the programmer and theciimput-
er. The use of symbolic substitution for error coimpen-
sation was also suggested.

Further tests with this concept and its various .4,-

Tabe V.Reslt o TstsUsngFie Tnkan Fie PCTet St maes pects are required. This requires devising more ro-
whTa Iof ete S atrttUins fv Tank Iage Oived (by TescStluasin ust rules. It also includes further use of the ability o'f

wit To t te isee Patii~s t Echimge mite (y Oclsin) the system to predict errors and compensate for them

Ain"' Atiil '1 using multiple filter banks. The use of abductive rea-
e' sIr~ni a..'t I I nit, linni tlk nfd'nn soning for developing the programs necessarv for this

v~irh. I i " ~tinjt. liirlbcrC~irfidnc appears quite attractive. Efficient methods of updat-
i 'I ilik Tank I iiIng the correlation filters on-line (involving the addi-

- 2' ' in I nk iTO tion or removal of training images) and the memryr
'I tank I -ink

a n~ lak A PC 6 stoirage requirements of such a system are other topics,
it I anlk i 4 T for future investigations.
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((.76. Examining the input and (output vectors from References
the associative memory, we found that thirteen sym- I .I a. (T n'i-r - -
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that the number of symbol errors was reduced to nine 2 1) ('.t, -'I ni 1 I tit )ti I h iz rinn lI (<:n t
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Processors", Optical Engineering, Special Issue on Optical Computing and

Nonlinear Optical Signal Processing, Vol. 26, pp. 34-40, January 1987.

80. D. Casasent, "Optical Information Processing", Sixth Edition, Encyclopedia of

Science and Technology, McGraw-Hill.

81. D. Casasent and R. Krishnapuram, "Curved Object Location by Hough
Transformations and Inversions", Pattern Recognition, Vol. 20, No. 2, pp. 181-188,
1987.

82. D. Casasent. S.F. Xia, A.J. Lee and J.Z. Song, "Real-Time Deformation Invariant
Optical Pattern Recognition Using Coordinate Transformations", Applied Optics,
Vol. 26, pp. 938-942, 15 March 1987.

83. S.A. Liebowitz and D. Casasent, "Error Correction Coding in an Associative
Processor", Applied Optics. Vol. 26. pp. 999-1006, 15 March 1987.

84. D. Casasent and A. Mahalanobis, "Rule-Based, Probabilistic, Symbolic Target
Classification by Object Segmentation", OSA Topical Meeting on Optical
Computing (March 1987), Technical Digest Series 1987, Vol. 11 (Optical Society of
America, Washington, D.C., 1987), pp. 155-158.

85. D. Casasent and S.A. Liebowitz, "Model-Based Knowledge-Based Optical
Processors", Applied Optics, Vol. 26, pp. 1935-1942, 15 May 1987.

86. R. Krishnapuram and D. Casasent, "lough Space Transformations for
Discrimination and Distortion Estimation", Computer Vision, Graphics, and Image
Processing, Vol. 38, pp. 299-316. February 1987.

87. D. Casasent and A. Mahalanobis, "Optical Iconic Filters for Large Class
Recognition", Applied Optics, Vol. 26, pp. 2266-2273, 1 June 1987.

88. R. Krishnapuram and D. Casasent, "Optical Associative Processor for General Linear
Transformation", Applied Optics, Vol. 26, pp. 3641-3648, 1 September 1987.

89. A. Mahalanobis, B.V.K. Vijaya Kumar and D. Casasent, "Minimum Average
Correlation Energy (\ACE) Filters", Applied Optics, Vol. 26, pp. 3633-36-10, 1
September 1987.

90. D. Casasent and B. Telfer, "Associative Memory Synthesis, Performance, Storage
Capacity and Updating: New Heteroassociative Memory Results", Proc. SPIE, Vol.
84 S, November 1987.
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91. D. Casasent and S.I. Chien, "Rule-Based String Code Processor", Proc. SPIE, Vol.
848, November 1987.

92. D. Casasent and A. Mlahalanobis, "Rule-Based Symbolic Processor for Object
Recognition", Applied Optics, Vol. 26, pp. 4795-4802, 15 November 1987.

12.1.3 BOOK EDITING AND BOOK CHAPTERS

1. Intelligent Robots and Computer Vision, Ed. D. Casasent, SPIE, Vol. 726, October

1986.

2. Hybrid Image Processing. Ed. D. Casasent and A. Tescher, SPIE, Vol. 638, April
1986.

3. "Optical Feature Extraction", D. Casasent, Chapter in Optical Signal Processing, pp.
75-95, Ed. by JL. Horner, Pub. by Academic Press, San Diego, 19S7.

4. "Optical Linear Algebra Processors", D. Casasent and B.V.K. Vijaya Kumar,
Chapter in Optical Signal Processing, pp. 389-407, Ed. by J.L. Homer, Pub. by
Academic Press, San Diego, 1987.

12.2 PRESENTATIONS GIVEN ON AFOSR RESEARCH

(AUGUST 1984-DATE)

September 1984

1. Philips Research Laboratories - Briarcliff, NY - "Optics and Pattern Recognition in
Robotics".

2. Optical Society of America - Pittsburgh, PA, "CNIU Center for Excellence in Optical
Data Processing".

3. Carnegie-Mellon University, ECE Graduate Seminar - Pittsburgh, PA, "Optical
Processing Research in the Center for Excellence in Optical Data Processing".

4. Westinghouse Co rporation - Baltimore, MD, "Research and Facilities in the Center
for Excellence in Optical Data Processing".

October 1984
5. Washington, D.C., "Optical Pattern Recognition: Feature Extraction".
6. Washington. D.C.. "Optical Pattern Recognition: Correlators".
7. Washingtcn, D.C., "Synthetic Discriminant Function Cae Studies".
8. Washington, D.C., "Basic Optical Signal Processing Architectures and Algorithms".
9. Washington, D.C., "Advanced Optical Signal Processing Architectures and

A!,orithms".
10. W.shington, D.C., "Optical Linear Algebra Processor Algorithms and

Architectures".
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11. Washington, D.C., "Optical Linear Algebra Processor Applications and High-

Accuracy Architectures".
12. Carnegie-Mellon University, ECE Sophomore Seminar - Pittsburgh, Pennsylvania,

"Research in the Center for Excellence in Optical Data Processing".

13. University of Pittsburgh, Center for Multivariate Analysis - Pittsburgh, PA,
"Advanced Multi-Class Distortion-Invariant Pattern Recognition".

14. Wright Patterson Air Force Base - Ohio, "Multi-Functional Optical Signal Processor

for Electronic Warfare"

15. George Mason University - Washington, D.C., "Optical Information Processing".

16. SPIE (IOCC) Conference - Boston, Massachusetts, "Optimal Linear Discriminant

Functions".

November 1984

17. SPIE Robotics Conference - Boston, MA, "Chord Distributions in Pattern

Recognition ".

18. University of Maryland - "Optical Processing for Autonomous Land Vehicle

Navigation".

January 1985

19. Fairchild Weston - Long Island, NY, "Optical Pattern Recognition and Optical

Processing".

20. SPIE Conference Los Angeles, CA, "Hybrid OpticalDigital Image Pattern

Recognition: A Review"
21. SPIE Conference - Los Angeles, CA, "A Computer Generated Hologram for

Diffraction-Pattern Sampling".

22. SPIE Conference - Los Angeles, CA, "A Recent Review of Hclography in Coherent

Optical Pattern Recognition".
23. Sandia National Laboratories - Albuquerque, NM, "Optical Pattern Recognition and

Optical Processing".

February 1985

24. NASA Lewis - Cleveland, 011, "Optical Linear Algebra Processors (Systolic)".

March 1985
25. George Washington University, - Washington, D.C., "Optical Linear Algebra for

SDI".
26. Lockheed Missiles & Space Co. - Sunnyvale, CA, "Advanced Hybrid Optical/Digital

Pattern Recognition"
27. OSA Topical Meeting on Optical Computing - Lake Tahoe, NV, "Fai-ication and

Testing of a Space and Frequency-Multiplexed Optical Linear Algebra Processor".

28. OSA Topical Meeting on Machine Vision - Lake Tahoe, NV, "Hierarchical Feature-
Based Object Identification".

29. OSA Topical Meeting on Machine Vision - Lake Tahoe, NV, "Correlation Filters for
Distortion-Invariance and Discrimination".

30. Texas Instruments - Dallas, TX, "Optical Pattern Recognition".

April 1985
31. Electro-Com Automation, Inc. - Dallas, TX, "Optical Pattern Recognition".

32. Eglin Air Force Base- Ft. Walton Beach, FL, "Optical Pattern Recognition and

Kalman Filtering".
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May 1985

33. Carnegie-Mellon University - Board of Trustees, "Optical Data Processing".
August 1985

34. SPIE - San Diego, CA, "Correlation Synthetic Discriminant Functions for Object
Recognition and Classification in High Clutter".

35. SPIE - San Diego, CA, "A Factorized Extended Kalman Filter".

September 1985

36. SPIE - Cambridge, LA. "Parameter Estimation and In-Plane Distortion Invariant
Chord Processing".

37. SPIE - Cambridge, MA, "Optical Processing Techniques for Advanced Intelligent
Robots and Computer Vision".

38. SPIE - Cambridge, MA, "High-Dimensionality Feature-Space Processing with
Computer Generated Holograms".

October 1985

39. SDI - Washington, D.C., "Optical Data Processing for SDI".
40. Martin Marietta - Denver, CO, "Optical Data Processing".

November 1985
41. IEEE Computer Society, Workshop on Corniputer Architectures for Pattern Analysis

and Image Database Management - Miami Beach, FL, "Optical Computer
Architectures for Pattern Analysis".

January 1986

42. SPIE Engineering Update Series, "Fourier Optics for Electrical Engineers" - Los
Angeles, CA.

43. SPIE Engineering Update S ries, "Optical Data Processing", Los Angeles, CA.
44. SPIE Conference - Los Angeles, CA, "A Feature Space Rule-Based Optical Relational

Graph Processor".
45. SPIE Conference - Los Angeles, CA, "Optical Linear Algebra Processors:

Architectures and Algorithms".
46. SPIE Conference - Los Angeles, CA, "Optical Al Symbolic Correlators: Architecture

and Filter Considerations".
47. Optical Society of America - Los Angeles, CA, "Optical Computing".
48. Corporate Advisory Group on Optical Information Processing - Los Angeles, CA,

"Optical Computing".
49. Jet Propulsion Laboratory"/NASA - Pasadena, CA. "Optical Linear Algebra and

Pattern Recognition Processors"
February 1986

50. Computer Science Department, Carnegie-Mellon University - Pittsburgh, PA,
"Optical Al Pattern Recognition Research in ECE".

March 1986
51. Carnegie-Mellon University, Professional Education Program - Pittsburgh,

Pennsylvania, "Optical Data Processing".
52. Air Force Institute Conference of Technology - Dayton, Ohio, "Optical Data

Processing at Carnegie-Mellon University".
.53. Mars Electronics - Philadelphia. PA, "Optical Pattern Recognition".
54. SPIE Advanced Institute Serics on Hlybrid and Optical Computers - Leesburg,
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Virginia, "Scene Analysis Research: Optical Pattern Recognition and Artificial
Intelligence".

April 1986
55. SPIE Conference - Orlando, FL, "Model-Based System for On-Line Affine Image

Transformations".
56. Robotics Institute - Carnegie-Mellon University - Pittsburgh, PA, "Optical Al

Pattern Recognition Research in ECE".

May 1986
57. IBM, Federal Systems Division - Manassas, VA, "Optical Computing".
58. General Electric - Philadelphia, PA, "Adaptive Optical Processing".
59. Litton Data Systems - Van Nuys, CA, "Multiple Degree of Freedom Pattern

Recognition".
60. Rockwell Corporation - Seal Beach, CA, "Optical Signal Processing"
61. NASA Jet Propulsion Laboratory. California Institute of Technology - Pasadena, CA.

"Multiple Degree of Freedom Optical Pattern Recognition".
62. SPIE Engineering Update Series, "Fourier Optics and Components for Electrical

Engineers" - Los Angeles, CA.
63. Philip Morris Corporation - Richmond, VA, "Applications of Opt'cal Data Processing

to Automated Inspection".

June 1986
64. Carnegie-Mellon University, Professional Education Program - Pittsburgh, PA,

"Optical Pattern Recognition".
65. Carnegie-Mellon University, Professional Education Program - Pittsburgh. PA,

"Optical Signal Processing".
66. SPIE Engineering Update Series, "Fourier Optics and Components for Electrical

Engineers" - Tufts University, Boston, MA. Boston, MA - "OperationsAhievable'
67. University of Pretoria - Pretoria, South Africa, "Optical Data Processing".

July 19t 0
68. IOCC Conference - Jerusalem, Israel, "Optical Artificial Intelligence Processors".

August 1986
69. SPIE Conference- San Diego, CA. "Distortion-Invariant Associative Processors".

September 1986
70. ALCOA - Pittsburgh, PA, "Optical Information Processing".
71. General Electric - Philadelphia, PA. "Optical Processing".
72. Eikonix Corp. - Boston, MA, "Optical Pattern Recognition for Optical Character

Recognition".
73. Penn State University - State College, PA, "Optical Scene Analysis and Artificial

Intelligence".

October 1986
74. Advanced Technology Intl. - Boston, MA, "Optical Information Processing".
75. Advanced Technology Intl.- Orlando, FL. "Optical Information Processing".
76. Advanced Technology Intl.- Washington. D.C., "Optical Information Processing".
77. Carnegie-Mellon University, Professional Education Program (presented to IBM) -

Pittsburgh, Pennsylvania "Optical Pattern Recognition".
78. Carnegie-Mellon University. Professional Education Program (presented to IBM) -

Pittsburgh, Pennsylvania. "Optical Data Processing".
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79. SPIE Conference - Boston, MA, "llierarchical Processor and \latched [ii ers fKr

Range Image Processing".

80. SPIE Conference - Boston, MA, "Large Class Iconic Pattern Recognition: An 0CI

Case Study".

81. Carnegie \Mellon University, ECE Graduate Seminar - Pittsburgh, PA, "Optical

Computing in ECE: 1986".

November 1986

82. ICALEO'86 - Arlington, VA, "Advanced Optical Pattern Recognition and Artificial

Intelligence".
83. Optical Society of America (San Diego Chapter) - San Diego, CA, "Optical

Computing".

December 1986

84. Philip Morris - Richmond, VA, "Optical Pattern Recognition for Inspection and

Robot ics".
85. ORI) - Washington, D.C., "Optical Computing Accomplishments".

January 1987

86. SPIE Conference - Los Angeles, CA. "A Directed Graph Optical Processor".

87. SPIE Conference - Los Angeles. CA, "Complex Data Handling in Analog and High-

Accuracy Optical Linear Algebra Irocessors".

88. SPIE Conference - Los Angeles. CA, "Parameter Selection for Iconic and Symbolic

Pattern Recognition Filters".

S9. SPIE Conference - Los Angeles. CA, "I-D Acousto Optic Processing of 2-1) Image

Data".

90. SPIE Conference - Los Angeles. CA, "Optical Pattern Recognition and Artificial

Intelligence: A Review" (Invited Keynote Speaker).

91. SPIE Conference - Los Angeles, CA, "Optical Pattern Recognition and AI ..\lgorithn,s

and Architectures for ATR and Computer Vision" (Invited).

92. SPIE Conference - Los Angeles. CA, "Electro Optic Target L)etection and Object

.Recognition" (Invited).

93. Workshop on Space Telerobotics - NASA JPL. Pasadena. CA. "Dlultiple [)egree of

Freedom Optical Pat tern Recognit ion ".
94 Hewlett Packard - Palo Alto, (A, "Optical Computing".

February 1987

95. ISC Defense Systems, Inc. - Lancaster, PA, "Optical (omputing and Signal
Processing".

96. DARPA - Washington, D.C, "Optical Computing: A Relview"

March 1987
97. Advanced Technology Intl., Short Course - Los Angeles, ('A. "Optical Information

Processing".
9N. Advanced Technology Intl.. Short Course- San Diego. ('A. "Optical Informatiotn

Processing".
99. Advanced Technology Intl., Short Course - Anaheim, CA, "Optical Information

Processing".
100. Ad vanced Technology Intl., Short Course - Palo Alto. (',, "Optical Inform ation

Processing".
101. Aerospace Corporation - Los Angeles, CA, "Opticia Computing and Signa:il

Processing Research at (II'".
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102. OSA Toical Nleet ig on Optical Comnputing - Lake Tahoe, NV,?Ul-I:.e

Probabilistic, Svnm bolj( Target Classification by Olbject Segmen tat ion"

May 1987

103. NAS.\; LangleyN Research Center - H amnpton. V'A, "\Iacline Vision"

June 1987

101. Perkin-Ehuner - WVhite Plains, NY, "Optical Computing"i

July 1987

105. Carnegie MIelloni Univ-ersity' - ECE Department, Presentation to the attendees of the

Fault T'olerant Comiputing Conference, Pittsburgh, PA.

Auguzt, 1987

10W UCLA Extension Course - Los Angeles, CA. "Optical Comnputing'.

107. Mlathemiatical Mlodeling Conference - St. Louis, N1O, " Coni put at ions with Optirlea

Computer-,".

108. TRW - Los Angeles. CA, "Op~tical [)ata Processing of SYnt 11(1ic Apert uro Rada1r

Sig-nals for Pat tern Recognition".

109q. Galileo - St urbridge, M1A. '"Producnt Opportunites in Opt ical l),tta 1Proees.ilrig

110.O General Electric - Valley Forge. PA. "RIecri t Progress in Adaptiv-e Optical I)at a

Processine".

September 1987

111. Defenise Sciencee Board. Penta:gon - W'ashiin gton, . )C. "Optical Conput in g f:r

Autoriat ic Target Recognition".

October 1987

112. AIAA Comiputers in Aerospace VI Conference - Bos~toni ,.\IA. "M\ulti-Functionial

Opical Logic. Nurnerical andl Pattern Recognition Processor".

113. Philip Mlorris Corporation -Richintd. 'VA, "Optical Processing for Product

Inspection'.

November 1987

111. SP1F Robotics, Conference -Boston. \.Lk, "Associative WiliiorY Sy.nthesis.

Performiai ce. St orage (''1pacit~y andl U pdat inrg: NeN% I let eroassociaive N \leni1orY

Resultsn".
115. SPE Robot(- iB oiernc ost on, VA\. "Rule-Bazied St rinigCd oesr

116. SP-,fIE Robotics Conference - Boston, M.A. "Moldel-Based Satellite Acquisition and

Tracking".
117. SPIL Robotic-s Co7nference - Boston . \ IA. "Optical Proeesscr fo.r P rod uctInpein

18. SPE Robotics (Con ferenice -Boston. MA. "Optical Feature Ext ract ion for I ugh-Speed

Inspect ion ".1

119. SPEF Robot ics ('niifere rice - Hlos-t on . MA. "Mu It i-S ensor lProcessii i: Objec-t Dtco

and Iderit ificat ion"

December 1987

120. National Security Agecc- Niarland, "Op~tical Informiation P~rocessinig",
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12.3 THESES SUPPORTED BY AFOSIR FUNDING

(SEPTEMBER 1984-DATE)

1. Eugene Pochapskv M.S. Dissertation, "The Simulation of Optical t atr
Recognition Systems", September 1984.

2. William Rozzi, M.S. Dissertation, "Advanced Quantitative Synthetic Discrimiriant
Function Tests on Ship Imagery", December 19S I.

3. James Fisher, M.S. Dissertation, "Extended Kalman Filter Algorithms for
Implementation on a High-Accuracy Optical Processor", December 1984.

4. \V.. (lang, Ph.). Dissertation. "Chord )istribution, and Correlation SI)-s in
Pat trn tec',initin". March .

5. Andrew J Lee. N.S. Dissertat ion. "ligh-Dimensionality Feature Space Pattern
Recognition t'sing Computer Generated 1Lolograms", ,January 1986.

6.. biiijil Mlaiia!inobis. S. uDssertation, "Application of Synthetic Diseriminant
, linlt ions .r Opt icl Clharac, .r Rcognition", September 19).

7. Jeffrey Richards. NS. Dissertatiou, "Optical Processing for Product Inspection"
November 19Y

8. Brian Telfer. M.S. Dissertation, "Opti-.al Associative Memories for Distortion-
Invariant Pattern 1?'.cogniiuion". February 19S7.

9. Ablijit Mahalanobis, Ph.D. Dissertatiun, "New Corre lation 7! ers for Symbolic
Rule-llased Pattern gec',riiti- n, " ugust 1987

10. laglurata 1Kris!hnapuram, Ph 1) Dissertition. "Ilough Space Associative Process,,;
f( r P'at letn l~ c ,g i i " .ugu:-t 19'7,








